

Reference Model for BCS
Certificates in Enterprise
and Solution Architecture

Version 4.0

June 2012

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 1 of 65

Reference Model for BCS Certificates in Enterprise and
Solution Architecture

This reference model follows the structure of the syllabus for BCS examinations in enterprise and
solution architecture. It defines terms used in the syllabus. It is designed to help:

� Examiners to scope and phrase examination questions.
� Examinees to understand terms and concepts in examination questions.
� Training Providers to scope training courses that lead to the examinations.

Acknowledgements

BCS gratefully acknowledges that about half this reference model (at version 1) was based on the
reference model published in 2008 by Avancier Ltd as an aid to architect training at
http://avancier.co.uk. The two models are aligned at the time this model is published.

Many other public domain sources (such as the Object Management Group, Open Group and ITIL)
have been used. Definitions which have been taken from another source are included in quotation
marks. Definitions which have been tailored to ensure consistency between terms within this
reference model are not attributed to any particular source.

Trademarks Mentioned in Definitions

CMM® and CMMI® (Capability Maturity Model Integration) are registered trademarks of the
Software Engineering Institute (SEI).

COBIT® is a registered trademark of the Information Systems Audit and Control Association and
the IT Governance Institute.

CORBA®, MDA®, Model Driven Architecture®, OMG®, and UML® are registered trademarks and
BPMN™, Business Process Modeling Notation™, and Unified Modeling Language™ are
trademarks of the Object Management Group.

IEEE® is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.

ITIL® is a Registered Trade Mark of the Office of Government Commerce in the United Kingdom
and other countries. IT Infrastructure Library® is a Registered Trade Mark of the Office of
Government Commerce in the United Kingdom and other countries.

Java® is a registered trademark of Sun Microsystems, Inc.

Microsoft® is a registered trademark of Microsoft Corporation.

PRINCE® is a registered trademark and PRINCE2™ is a trademark of the Office of Government
Commerce in the United Kingdom and other countries.

TOGAF™ and Boundaryless Information Flow™ are registered trademarks of The Open Group

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 2 of 65

Contents

1. Architecture and Architects ..4

1.1 Foundation Terms and Concepts ..4
1.2 Intermediate Terms and Concepts ..7

1.2.1 Architecture Granularity ...7
1.2.2 Architecture Domains ..7
1.2.3 Hierarchical or Layered Architecture..9
1.2.4 Architect Roles, Goals and Skills ...9

1.3 Practitioner Terms and Concepts..11
2. Architecture Precursors (Requirements & Context) ...12

2.1 Foundation Terms and Concepts ..12
2.1.1 Stakeholders..12
2.1.2 Elaboration of Inputs to become Deliverables12

2.2 Intermediate Terms and Concepts ..13
2.2.1 Drivers, Aims and Directives..13
2.2.2 Solution Descriptions and Plans ..14
2.2.3 Standards ..15
2.2.4 Scope of Architecture Work ...15
2.2.5 Requirements ..16
2.2.6 Regulatory Requirements ..17
2.2.7 Business Case [See Migration Planning for definitions].................18

3. Architecture Frameworks ...19
3.1 Foundation Terms and Concepts ..19
3.2 Intermediate Terms and Concepts ..19

3.2.1 Architecture Process Frameworks ...19
3.2.2 Architecture Descriptions...20
3.2.3 Architecture Models and Languages ...22
3.2.4 Architecture Description Structures ...23

4. Business Architecture ..25
4.1 Foundation Terms and Concepts ..25
4.2 Intermediate Terms and Concepts ..25

4.2.1 Business Architecture Structure and Behaviour25
4.2.2 Business Process Decomposition and Automation........................28
4.2.3 Design for Business Security...28

5. Data Architecture ...29
5.1 Foundation Terms and Concepts ..29
5.2 Intermediate Terms and Concepts ..30

5.2.1 Unstructured data management ..30
5.2.2 Data Architecture ...30
5.2.3 Data Qualities and Integration ...32
5.2.4 Design for Data Security..32

6. Software Architecture ..34
6.1 Foundation Terms and Concepts ..34
6.2 Intermediate Terms and Concepts ..36

6.2.1 Component Interfaces ...36
6.2.2 Component Structures and Patterns..37
6.2.3 Component Interoperation Styles ..38

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 3 of 65

6.2.4 Component Communication Styles..39
7. Applications Architecture ...42

7.1 Foundation Terms and Concepts ..42
7.2 Intermediate Terms and Concepts ..43

7.2.1 Applications Architecture Structure..43
7.2.2 Applications Architecture Behaviour ..43
7.2.3 Applications Integration ...44
7.2.4 Design for Applications Security ..45

8. Design for NFRS..46
8.1 Foundation Terms and Concepts ..46
8.2 Intermediate Terms and Concepts ..46

9. Infrastructure Architecture..48
9.1 Foundation Terms and Concepts ..48

9.1.1 Basic Infrastructure Components...48
9.1.2 Network scopes ...48
9.1.3 Network topologies ..49
9.1.4 Network layers ...49
9.1.5 Network protocols ..50
9.1.6 The internet ...51

9.2 Intermediate Terms and Concepts ..51
9.2.1 Infrastructure services and components ..51
9.2.2 Enterprise technology rationalisation ...52
9.2.3 Solution technology definition ..53
9.2.4 Connecting Applications to Networks ..53
9.2.5 Design for Infrastructure Security ..54

10. Migration Planning ...55
10.1 Foundation and Intermediate Terms and Concepts55
10.2 Practitioner Terms and Concepts..56

11. Architecture Management..57
11.1 Foundation and Intermediate Terms and Concepts57
11.2 Practitioner Terms and Concepts..57

11.2.1 Architecture Implementation ..57
11.2.2 Architecture Change Management ..58
11.2.3 Architecture Governance ...59
11.2.4 Architecture in Operations ...60

12. Enterprise Technology Classification...62

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 4 of 65

1. Architecture and Architects

This section is about work and roles to describe the high-level design of business systems and the
information systems that support them (not work and roles related to buildings).

1.1 Foundation Terms and Concepts

This reference model defines terms used in specifying the structure and behaviour of activity
systems. Four essential architecture concepts can be classified as shown in this table.

 Behaviour Structure

External Service Interface

Internal Process Component

This reference model is based the notion that these four concepts can be applied in each of three
architecture domains, shown here as a layered architecture domain hierarchy.

Business Services Services
Business

Business Functions Components

Information System Services Services
Information Systems

Applications Components

Platform Services Services
Technology Infrastructure

Technologies Components

The remainder of this reference model defines terms used in architecture. The definitions are
generalisations that draw from several sources.

Architecture 1: documentation describing the structure (components) and
behaviour (processes) of a system. A detailed plan of the
system to guide its implementation.
Or 2: the process for describing the architecture of a system
to meet given requirements and under given constraints.

Structure What a system is made of. A configuration of items. A
collection of inter-related components or services.
Possible structures include hierarchies (items arranged in a
cascade of one-to-many relationships) and networks (items
connected by many-to-many relationships).

System A structure of interacting subsystems or components that
perform activities.
An encapsulated collection of processes that transform inputs
into outputs (Output being the purpose of a man-made
system).

Software system A system in which computer programs execute the
processes.

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 5 of 65

Human activity system A system in which people execute some or all of processes.
A rich system, much more complex and loosely-defined than
a software system. It relies to a greater or lesser degree on
human personalities, skills, ingenuity and judgements about
what to do and how to do it.

Component A subsystem that is encapsulated behind an interface - can
be replaced by any other with the same interface - is related
to other subsystems by requesting or delivering services.
A component can have several interfaces.

Building block A synonym in some architecture frameworks for a component
and/or an architectural entity. To avoid this ambiguity, this
reference model eschews the term.

Function 1: A component that offers several services.
Or 2: A process that delivers a single service.
Or 3: A purpose or goal of a component or process.
To avoid this ambiguity, this reference model eschews the
term, except within business function.

Interface The means of connecting to a system, process or component.
1: A list of services, offered by one or more components.
Or 2: The signature (name, inputs and outputs) of one
service.
Or 3: A data flow between sender and receiver components
Or 4: The protocols used to exchange data between
components.
Or 5: The channel via which data flows are passed
This reference model favours definition 1.

Location A place where business is done, or where computers,
applications or their users are. An identifiable point in space
or geography. An architectural entity that appears in artefacts
such as technology deployment diagrams.

Time Period A slot in a schedule. An architectural entity that appears in
artefacts such as application availability tables.

Behaviour What a system does. What external entities observe a system
as doing. The processes executed or supported by a system.

Service 1: The outcome of a process that is executed in response to a
request from a client.
Or 2: An interface of a component (such as a web service)
that may offer many services of kind 1.
This reference model favours definition 1, to limit confusion
between components and services.

Service contract The signature, semantics and non-functional characteristics
of a service.
The signature is what a client needs to invoke a service -
composed of a name, inputs (arguments) and outputs.
The semantics are what a client designer needs to know of
what the service does - composed of its preconditions and
post conditions.
The non-functional characteristics are what a client designer
needs to know of the conditions under which the service
works, which includes both performance and commercial
conditions.

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 6 of 65

Process 1: A procedure, started by an event, which terminates with
the delivery of an output or service. A set of steps or
activities arranged under a control flow in one or more
sequential paths.
Or 2: An encapsulated system or subsystem - as in the
“active process” on a computer.
This reference model favours definition 1.

Life cycle A process from birth to death. E.g. the life of:
� a system from conception through deployment and use to

removal
� a project from conception through development to

delivery
� an entity [See Data Lifecycle.]

Abstraction 1: A process of composition, generalisation or idealisation by
which shorter and more general descriptions are produced
from longer, more detailed and more specific descriptions.
Or 2: A simplified description of a system that is made by the
process at definition 1.
Abstraction is tool that every architect must be able to use.
Enterprise architects work with the highest abstractions.

Composition 1: the assembly of parts into a whole;
Or 2: the organisation of units under a manager or owner;
Or 3: the encapsulation of content inside a shell.
The result is some kind of aggregate or composite
component or process. A composite contains its components
in some sense. A description made with reference to a
whole, manager or shell is more abstract than one that refers
to its parts, units or content.
Enterprise architects tend to work with coarse-grained
components.

Decomposition The opposite of composition. Division of one composite or
aggregate component or process into several components or
processes. The conventional advice is that it is difficult to
maintain the integrity of a hierarchical structure that is
decomposed more the three or four levels (or more than a
thousand elements) from the top.

Generalisation Abstraction from several specific components or processes
into a more generic component or process. A generalisation
contains only the common features of its specialisations.
Enterprise architects look to re-use generic components and
services.

Specialisation The opposite of generalisation; the elaboration or division of a
general component or process into one or more specific
components or processes. A specialisation contains its
generalisation in some sense.

Idealisation 1: A kind of generalisation that produces a logical description
of a physical component or process. Reverse engineering to
produce a description that can be presented as the
requirement for the real thing.
Or 2: The separation of an interface from the component(s)
that realise the interface.
Enterprise architects define logical components and services.

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 7 of 65

Realisation The opposite of idealisation; leads to the instantiation of
physical materials. It can be viewed as forward engineering,
as a progression from requirement to solution.

1.2 Intermediate Terms and Concepts

1.2.1 Architecture Granularity

Architecture granularity A scale which ranges from coarse-grained or high level to
fine-grained or detailed. Generally speaking, the narrower
the scope of the system, the finer-grained the description that
can be written in a given time.
This reference model distinguishes three levels of
architecture granularity.

Enterprise architecture A strategic approach to architecture that addresses a whole
enterprise. The highest level, widest scope, longest term kind
of architecture.
1: documentation describing the structure and behaviour of
an enterprise and its information systems.
Or 2: a process for describing an enterprise and its
information systems and planning changes to improve the
integrity and flexibility of the enterprise.

Solution(s) architecture A relatively tactical approach to architecture that addresses
specific problems and requirements, related to selected
information systems and business processes.
1: documentation describing the structure and behaviour of a
solution to a problem.
Or 2: a process for describing a solution and the work to
deliver it.

Software architecture A kind of architecture that addresses the scope and
interaction of software components within an application.
1: Documentation describing the internal structure and
behaviour of a software application.
Or 2: Principles and patterns for software modularisation, for
describing and building the internal structure of an
application.

1.2.2 Architecture Domains

Architecture domain A broad area architectural interest such as business, data,
applications, and technology infrastructure. A facet or view of
an architecture description. A description that hides other
facets or views of the system described. A partial
representation of a whole system that addresses several
concerns of several stakeholders.

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 8 of 65

Primary Domains

Business architecture The structure and behaviour of a business system (not
necessarily related to computers). Covers business functions
or capabilities, business processes and the roles of the actors
involved. Business functions and business processes are
mapped to the business goals and business services they
support, and the applications and data they need.

Data architecture The subset of information architecture that is focused on the
definition, storage and movement of structured data.
The data structures used by a business and/or its
applications. Includes meta data: that is, descriptions of data
in storage, data in motion, data structures and data items.
Includes mappings of data objects to data qualities,
applications, technologies etc.

Applications architecture The structure and behaviour of applications used in a
business, focused on how they interact with each other and
with business users or actors. Focused on the data
consumed and produced by applications rather than their
internal structure.
The applications architecture is shaped by where data is
obtained from and where it is used.
The applications are usually mapped to the business
functions they support and the platform technologies they
need.
[See also application portfolio management.]

Infrastructure architecture The structure and behaviour of the technology platform that
underpins user applications. Covers the client and server
nodes of the hardware configuration, the platform applications
that run on them, the services they offer to applications, the
protocols and networks that connect applications and nodes.

Other Domains

Information architecture A broad domain that covers both structured and unstructured
data, that is, content, document and knowledge management.
(This reference model focuses on structured data.)

Information systems
architecture

Often used to mean the combination of applications
architecture and data architecture. It depends on but does not
include the technology platform.

Software (aka application)
architecture

The internal structure, the modularisation of software, within
an application. Discussed for example in “Patterns of
enterprise application architecture” by Martin Fowler.
This is applications architecture at the lowest level of
granularity - usually below the level of modularity that
enterprise and solution architects define. However, there is
no rigid dividing line.

Security architecture The various design features designed to protect a system
from unauthorised access. Not a cohesive architecture on its
own so much as features of the other architecture domains –
business, data, applications and infrastructure – as
mentioned in other sections.

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 9 of 65

1.2.3 Hierarchical or Layered Architecture

Hierarchical or layered
architecture

A structure in which components are organised into layers,
such that components in one layer delegate work to
components in the layer below, but not the layer above.

Platform The layer that lies beneath and provides services to the layer
under consideration.
E.g. beneath the applications are application platform
technologies including database management systems, and
beneath the operating system is the hardware platform.

The architecture domain
hierarchy

Business, application and infrastructure architecture domains
viewed as a hierarchically layered structure. The
components in one layer offer services to components in the
layer above.
This is a useful mental model for enterprise and solution
architects alike. This reference model features several other
hierarchical decomposition structures.

1.2.4 Architect Roles, Goals and Skills

Architect One who designs buildings and superintends their
construction. One who describes the architecture of system in
sufficient detail for work to be planned and detailed design
and building to proceed, then governs the building work.

Architect Role The list of roles below has been agreed by BCS as sufficient
for examination purposes.
The focus of the following roles is evident from the definitions
of architecture levels:
� Enterprise architect: defines principles, policies and plans

that cover several solutions to several business
problems.

� Solution architect: describes the structure of solution to a
business problem, which may include several
applications and technologies.

� Software architect: describes how a single application is
built from software modules, at a fine-grained level.

� The focus of the following roles is evident from the
definitions of architecture domains:

� Business architects: focus on business architecture; their
principal concerns are the functions and processes of the
business.

� Data architects: focus on data architecture; their principal
concern is to ensure data quality in data stores and data
flows, through the definition and maintenance of meta
data.

� Applications architects: focus on applications
architecture; their principal concern is the modularity of
applications and data that flows between them.

� Technical/infrastructure architects: focus on
technical/infrastructure architecture.

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 10 of 65

Enterprise architect goals The list of goals below has been agreed by BCS as sufficient
for examination purposes.
� Improved alignment of business and IT
� Improved IT cost-effectiveness
� Business agility
� Technical agility
� Long term planning: enablement of strategically

beneficial IS/IT work.
� Vendor and technology independence (portability)
� De-duplication of applications and technologies
� Interoperability of applications and technologies
� Simpler systems and systems management.
� Improved procurement.

Solution architect goals The list of goals below has been agreed by BCS as sufficient
for examination purposes. The solution architect supports the
goals of an enterprise architect, but focuses more on the
following:
� Timeliness of IS/IT project deliverables
� Cost of IS/IT project deliverables
� Quality of IS/IT project deliverables
� Solution-level risk identification and mitigation
� Application integration and data integrity
� Conformance of solution to non-functional and audit

requirements
� Conformance of solution to principles, standards,

legislation.
� Effective interaction between managers and technicians.
� Governance of detailed design to architecture principles

and standards.
Architect knowledge and
skills

The list below has been agreed by BCS as sufficient for
examination purposes.
� Holistic understanding of business and technical goals.
� Holistic understanding of business and technical

environment
� Broad technical knowledge – including current trends.
� Broad methodology knowledge
� Analysis of requirements and problems
� Innovation.
� Leadership.
� Stakeholder management.
� Communication, political and soft skills.
� Awareness of project management and commercial risks

and issues.

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 11 of 65

1.3 Practitioner Terms and Concepts

The table below suggests analogies between business systems and software systems. Practitioner
architects should understand such analogies, and their limits.

Business (human activity) systems Software (computer activity) systems

An enterprise offers services (business
services) to its customers.

An application offers services (use cases) to
its users.

An enterprise is divided into component
divisions, which are further subdivided.

An application is divided into components,
which are further subdivided.

Enterprise divisions offer business services to
each other.

Application components offer automated
services to each other.

Some divisions (e.g. Accounting,
Procurement, HR) offer common services to
many other business functions.

Some components (e.g., Address retrieval,
Currency conversion, Date, Payment) offer
common services to many other applications.

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 12 of 65

2. Architecture Precursors (Requirements & Context)

This section is about the various inputs, the requirements and constraints that guide an architect as
to the nature and shape of the solution to be built. This information is needed to support a
statement of architecture work. Note that management activities are addressed in sections 10 and
11.

2.1 Foundation Terms and Concepts

2.1.1 Stakeholders

Stakeholder Person or role with power over and/or interest in work to be
done or its deliverables. A person who has one or more
concerns about the system to be built (because they own it,
manage it, use it or other reason).

Stakeholder management A technique based on analysis of stakeholders’ positions in a
power/interest grid, which determines a communication plan
for each stakeholder.

Sponsor A stakeholder who is willing to apportion money or other
resources to some work.

Concern A general kind of requirement (e.g. availability, usability) that
is important to one or more stakeholders in the system, and
determines the acceptability of the system to those
stakeholders.
A concern may be addressed in several view points. A view
point may address several concerns.

Architect stakeholder Enterprise and solution architecture stakeholders include:
� Owners: business and IT board members, customers.
� Managers: programme/project/change managers.
� Buyers: procurement/acquisition organisation.
� Suppliers: service and product providers.
� Designers, Builders, Testers: other project team

members:
� Users: representatives and domain experts.
� Operators and Maintainers: IT Services Management.

2.1.2 Elaboration of Inputs to become Deliverables

Elaboration of inputs to
become deliverables

The inputs to architecture definition include high level aims,
directives, visions and strategies. During architecture
definition, these are decomposed and elaborated. So the
outputs include lower-level elaborations of the inputs.
This reference model tends to distinguish different levels of
decomposition by using different words.

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 13 of 65

2.2 Intermediate Terms and Concepts

2.2.1 Drivers, Aims and Directives

Driver A pressure (internal or external) that helps to shape aims and
plans.
E.g. customer feedback, increased competition, staff
retention.

Aim hierarchy A hierarchy of goals, objectives and requirements, applicable
to an enterprise, system or project.

Goal (business or technical) An aim at the top of the aim hierarchy. It is often decomposed
into lower level objectives. Sometimes qualitative; sometimes
quantified using SMART Key Goal Indicators.

Objective An aim in the middle of the aim hierarchy. It supports one or
more higher-level goals. It should have SMART Key
Performance Indicators.

Requirement An aim at the bottom of the aim hierarchy.
[See “requirements statement” for further definition.]

Balanced Score Card A management tool in which top-level objectives are spread
across four categories, then cascaded down the organisation
and decomposed at each level.

SMART The acronym for Specific, Measurable, Actionable, Realistic
and Time-bound. The qualities of a good goal, objective or
requirement.

The directive hierarchy below reconciles TOGAF 9 with the OMG's Business Motivation Model by
placing Principles above Policies and Rules, and defines these terms so as to ensure consistency
with other terms in this reference model.

Directive hierarchy A hierarchy of principles, policies and business rules,
applicable to an enterprise, system or project. Each is a
statement that guides people along a path to reach an aim,
and can be used as a tool of governance.

Principle A directive at the top of the directive hierarchy. A strategic,
abstract and not-directly-actionable directive that derives from
high-level goals. A statement of an outcome that reflects
goals. A tool used in governance of architecture work.
Principles can be related to business, data, applications,
infrastructure or security. E.g.
� Waste should be minimised.
� Data security is paramount.

Policy A directive in middle of the directive hierarchy. A tactical
directive that derives from objectives. A tool used in
governance of day to day work. It guides behaviour that the
company expects will lead to desired outcomes. e.g.
Members of the public have minimal access to data.
� USB ports are disabled.
� Message data at security level 3 is encrypted.
[The definition in the OMG Business Motivation Model “A rule
that governs or guides the strategy” is closer to Principle
above.]

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 14 of 65

Business Rule A directive at the bottom of the directive hierarchy. It directs
and constrains a procedure. It appears in specifications of
automated data processing.
A Term, Fact, Constraint or Derivation Rule used in definition
of data processing. e.g.
� AccessLevel = Low if UserType = Public.
[The definition in the OMG Business Motivation Model “An
actionable rule derived from the policy” is comparable.]

2.2.2 Solution Descriptions and Plans

Business mission What an organisation is about; its reasons for being; the
essential products and services it offers customers.

Business vision A high-level outline of an aspirational target state for an
enterprise. “What an organisation wants to be or become.”
(Business Motivation Model.)
The target state is supposed to meet the goals of one or more
stakeholders. The state may be attainable and associated
with specific objectives. The state may be unattainable, used
only as a guiding principle for planning.

Mission statement A declaration of mission, vision, main goals and values.

Target solution hierarchy A solution defined at a vision level may be elaborated at
increasing levels of detail. Solutions may be mapped to aims
and directives.

Solution vision An outline description of a target system, just enough to
enable options to be compared and /or work to proceed. May
be a response to a business problem or an elaboration of
how to reach a business vision.

Solution outline A high-level outline of a target system, produced after a first
pass architecture definition, enough to pass risk assurance.

Solution to be built A project-ready architecture, completed in sufficient detail for
the project to be scheduled and resourced, and the building
team to start work.

Plan A document that defines the process to reach an aim. It
should include timescales, costs and resources for each step.
There can be a plan for an organisation, a project, or person,
at any level of detail.

Plan hierarchy Plans are often arranged in a hierarchy, increasing in number
and in detail from strategic to tactical.

Strategy “A plan to channel efforts towards achieving a goal”. Business
Motivation Model.
A relatively high-level and/or long-term plan to reach a new
state and so achieve some relatively high-level and/or long-
term goals.

Programme plan A plan for a programme of projects.
In the context of architecture, the plan via which the
enterprise architecture is developed and implemented.

Project plan A plan for a project to develop and/or implement a solution.
In the context of architecture, the plan via which a relatively
self-contained solution architecture is developed and/or
implemented.

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 15 of 65

2.2.3 Standards

Standard A widely-accepted measure or set of qualities that is intended
to increase uniformity between distinct systems and
processes.

Standards Body An enterprise with a mission to set standards and assess
compliance to them. E.g.
� American National Standards Institute (ANSI).
� BCS The Chartered Institute for IT (BCS).
� Information Systems Examination Board (ISEB).
� Institute of Electrical and Electronic Engineers (IEEE).
� Information Systems Audit and Control Association

(ISACA)
� International Standards Organisation (ISO).
� Office of Government Commerce (OGC).
� Open Applications Group Standards (OAGIS).
� Organisation for Advancement of Structured Information

Standards (OASIS).
� The Object Management Group (OMG).
� The Open Group.
� US National Institute of Standards and technology

(NIST).
� Software Engineering Institute (SEI).

Enterprise Standards
Information Base

A repository contains standards recommended or used
across the enterprise. Cf. The Open Group’s SIB.

Profile The standards (and perhaps options and parameters of those
standards) necessary for a system, application or component
to do its job.

Profiling Selecting standards for a particular system, application or
component.

2.2.4 Scope of Architecture Work

Scope of architecture work The work needed to change a system may be divided
between small changes handled through change
management and big changes that require a substantial
architecture effort.
Architecture work has four dimensions of scope:
� Breadth: scope of the enterprise, system or solution.
� Focus: business, application or infrastructure change.
� Depth: the detail to which deliverables will be produced.
� Constraints on work.

Constraint (on work) A factor that limits work to be done or potential solution
options, such as time, budget and resources.
(Not a constraint in the sense of a data type or business rule.)

Breadth of enterprise or
system

This dimension of scope may be defined in several ways.
� Aim view: goal/objective/requirement catalogue
� Service view: a service catalogue.
� System view: a top-level context diagram.
� Process view: a top-level process map or use case

diagram.
� Data view: a conceptual/domain/business data model.

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 16 of 65

Context Diagram
(interfaces to external
systems)

Shows a system as a ‘black box’, the inputs consumed and
the outputs produced by that system, and the external entities
(actors and/or roles) that send inputs and receive outputs.

External entity An actor or role that inputs to and/or consumes outputs from
a system or process. Defining external entities as actors
tends to make a model more understandable. Defining
external entities as roles tends to make a model more stable
and flexible.

Actor An identifiable individual external entity that plays one or
more roles in relation to a system or process. May be a
person, a human activity system or a software system.
E.g. BACS, salesforce.com, a sales executive, a customer,
an auditor.

Role A part played by one or more actors in relation to a system or
a process. With software systems, the part is often to enter
or consume data and so named after the input or output data
flow.
E.g. loan applicant, expense claim approver, auditor.

2.2.5 Requirements

Requirement statement A statement of need with which compliance must be
demonstrated; this implies an acceptance test and an
acceptance authority.
Often expressed as an entry in a requirements catalogue or a
use case description.
Requirements attributes are likely to include: reference
number, description, source, owner, type, priority, and
deadline. A requirement should be SMART, which implies the
definition of acceptance tests.

Functional requirement A requirement related to data into or output from a system,
and to processes and business rules for input and output.

Audit requirement A requirement to do with ensuring an auditor can find the
when/where/how/who of a process or stored data, and can
replay events. (Considered by some to be a functional
requirement and others to be non-functional.)

Non-functional requirement A requirement about the ability of a system to perform its
functions (whatever they are) effectively and efficiently.
Usually quantitatively measurable.

Performance Subdivides into two measures, often in opposition:
� Throughput: number of services executed in a time

period.
� Response or cycle time (aka latency): time taken from

request to response.
Availability The amount or percentage of time that the services of a

system are ready for use, excluding planned down time.
Recoverability The ability of a system to be restored to live operations after a

failure.
Reliability The mean time between failures. Usually applied to the

technologies in the Infrastructure, ignoring the more likely risk
of application failure.

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 17 of 65

Integrity [A term with several meanings defined under Data integrity
and Data flow integrity.]

Scalability The ability of a system to grow to accommodate increased
work loads.

Security The ability of a system to prevent unauthorised access to its
contents.

Serviceability The ability of operations team to monitor and manage a
system in operation.

Usability The ability of actors to use a system.

Maintainability The ability of maintenance teams to revise or enhance a
system.

Portability The ability to move a component from one platform to
another, or convert it to run on another platform. In practice,
it can be difficult to set or estimate this quality metric
realistically.

Interoperability The ability for subsystems to exchange data at the technical
level using shared protocols and networks. Sometimes
embraces data integratability.

Integratability The ability of interoperable subsystems to understand each
other, which requires either common data types or brokers to
translate between data types.

Extensibility A synonym of maintainability.

Service Level Agreement
(SLA)

“Written agreement between an IT service provider and
customer (s) that documents agreed-to service levels.” (ITIL)
A document defining the requirements that services must
meet, often focused on non-functional requirements.

Service Level Requirement
(SLR)

“Criteria for level of service required to meet business
objectives.” ITIL

2.2.6 Regulatory Requirements

Regulatory requirement A law or other regulation that adds to the requirements for or
constraints on any solution to be developed or maintained.

IT accountability and
procurement regulations

Regulation that makes public sector, IT directors and CIOs
accountable for justifying investment in IT and for fair
procurement from suppliers.
US legislation of this kind was the stimulus for many early
enterprise architecture initiatives:
Government Performance Results act (GPRA) of 1993, P.L.
103-162.
Federal Acquisition Streamlining act (FASA) of 1994, P.L.
103-355.
Information Technology Management Reform act (ITMRA) of
1996, Division E, P.L. 104-106.
Various EU directives have followed suit.

Data protection and
freedom regulations

UK's data protection act:
http://www.opsi.gov.uk/ACTS/acts1998/19980029.htm
Freedom of Information act 2000:
http://www.opsi.gov.uk/ACTS/acts2000/20000036.htm

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 18 of 65

Disability and accessibility
regulations

UK Disability Discrimination act:
http://www.opsi.gov.uk/acts/acts1995/1995050.htm.
W3C Web Content Accessibility Guidelines:
http://www.w3.org/TR/WAI-WEBCONTENT/
US Americans with Disability act.

Shareholder protection and
audit regulations

US Sarbanes-Oxley act of 2002.
Basel II.

Intellectual property rights
regulations

International and national laws protect people and enterprises
from theft of intellectual property.

2.2.7 Business Case [See Migration Planning for definitions]

Business case (before
architecture)

Should be outlined at the start and updated as need be. It will
be reviewed and refined several times while architecture work
is done. It may decompose into business cases for specific
options, stages or projects within the overall solution.
[See the Migration Planning section for further definitions of
this the supporting terms below.
� Return on Investment (ROI)
� Cost-benefit analysis
� Solution options
� Risk analysis
� Gap analysis (options)
� Trade-off analysis.]

Business scenario A process, or story, to which are attached details of the
actors, applications and technologies involved. A good way
to create and present an architecture description.
May be defined to support a solution vision or business case.
May be defined during business architecture definition. May
be presented as an example instance of a business process.

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 19 of 65

3. Architecture Frameworks

This section is about frameworks designed to help people create architecture descriptions and use
them to good effect.

3.1 Foundation Terms and Concepts

Architecture Framework A structured collection of guidance and techniques, a
methodology, designed to help people create architecture
descriptions and use them to good effect.
A comprehensive framework contains:
� a development process (a process framework)
� a classification of architecture descriptions (a content or

documentation framework)
� advice on organisation.

3.2 Intermediate Terms and Concepts

3.2.1 Architecture Process Frameworks

Architecture process
framework

A description of a process that develops a target architecture
to meet some requirements, under some constraints, plans
the move from the baseline state to the target state, and
governs that change.

Architecture state A baseline architecture describes a system in a state,
perhaps operational, ready to be reviewed and/or revised.
A target architecture describes a system in a state that is to
be created and implemented in the future.
An intermediate or transitional architecture defines a state of
a system between baseline and target.

The Open Group
Architecture Framework
(TOGAF)

A well-known framework for enterprise architecture, centred
on a process called the architecture development method
(ADM).

Architecture Development
Method (ADM)

The core of TOGAF. A step-by-step process to develop and
use an enterprise architecture. Designed more for enterprise
architecture than solution architecture. Involves a cycle of 8
phases.
A. Architecture Vision
B. Business Architecture
C. Information System Architecture (Data and Applications)
D. Technology Architecture
E. Opportunities and Solutions
F. Migration Planning
G. Implementation Governance
H. Architecture Change Management.

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 20 of 65

Avancier Methodology
(AM)

An architecture process framework designed more for
solution architecture than enterprise architecture. The
process is presented in 9 phases, though iteration and
parallelism is expected.
1. Define precursors
2. Scope the work
3. Understand the baseline
4. Review non-functional criteria
5. Outline the target
6. Select and manage suppliers
7. Plan the migration
8. Hand over
9. Govern the migration.

3.2.2 Architecture Descriptions

Architecture description
hierarchy

In describing the structure and behaviour of an enterprise or
system, it is common to build a three level architecture
description.
Architecture deliverables contain artefacts, which are in turn
composed from architectural entities.
Conversely: an entity can appear in several artefacts; an
artefact can appear in several architecture deliverables.

Architecture deliverable A report that an architect is required to deliver. Deliverables
include management and project documents as well as
architecture descriptions that contain architecture artefacts.
Deliverable examples: Request for Work, Statement of Work,
Architecture Requirements, Architecture Definition, RAID
Catalogue, Migration Plan.

Architecture artefact A list, hierarchy, table, diagram or model that names and
relates architectural entities. It describes the entities to some
extent, though they are usually documented separately.
Artefact types (aka view points) include:
PRECURSORS: Goal or requirements hierarchy, Goal or
requirements traceability, Process map, Context diagram.
BUSINESS: Business function structure, Business process
model, Organisation structure, Location structure, Business
function dependency matrix, Business data model.
DATA: Data model, Data lifecycle, Data structure, Business
function-Data CRUD matrix, Application-Data CRUD matrix,
Data dissemination matrix.
APPLICATIONS: Application portfolio, IS context diagram,
Business-Applications matrix, Applications architecture
diagram, Application decomposition diagram, Software
layering diagram.
INFRASTRUCTURE: Technical Reference Model, Standards
Information Base, Technical environments outline, Hardware
configuration diagram.

Architectural entity A discrete architectural element, an object in an architecture
repository that is reusable in different artefacts, and is
definable using a standard template. An entity instance may
be decomposed into finer-grained instances of the same type.

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 21 of 65

Most architectural entity types can be classified as belonging
to an architecture domain. For example:
PRECURSORS: Stakeholder, Business goal/objective,
Principle, Standard.
BUSINESS: Organisation unit, Business function, Business
process, Role, Actor, Business service, Location, Time
period.
DATA: Data entity, Data event, Data flow, Data quality, Data
source, Data store.
APPLICATIONS: Application, Data flow, Use case,
Automated service, Component.
INFRASTRUCTURE: Technology, Computer, Network

Mapping An artefact, view or model that relates items in different
structures, made for the purposes of
� gap analysis,
� impact analysis,
� requirements traceability or
� cluster/affinity analysis.
Artefacts that take the form of mappings between
architectural entities include:
� organisation unit to business function,
� business function to application,
� application to platform technology.
� data entity to business function,
� data entity to data store,
� data entity to data quality.

ISO/IEC 42010 Recommended Practice for Architecture Description of
Software-Intensive Systems.
A standard for software architecture or system architecture. It
focuses on the description of an architecture as the concrete
artefact representing the abstraction that is software
architecture or system architecture.
Commonly known by its original identity ANSI 1471.

View The term used in ISO/IEC 42010 for an instance of a broad
architecture domain description or narrower architecture
artefact.
“a representation of a whole system from the perspective of a
related set of concerns, to demonstrate to one or more
stakeholders that their concerns are addressed in the design
of the system.”
Views are decomposable. Views can share content. Views
can contain parts of other views.
An instance of a view point. A description that hides irrelevant
details or facets of the system described.
E.g. A logical data model shows the scope and structure of
data stored by an application, but shows nothing of processes
or technologies.

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 22 of 65

View point The term used in ISO/IEC 42010 for a type of architecture
domain or narrower architecture artefact.
“what views of the same kind look like… a schema or
template… describing the purpose and intended audience of
the view”
Defines a view’s scope (the concerns addressed) and style
(documentation conventions). Should be stored for reuse by
architects in the same organisation.
E.g. Logical data models drawn using the IDEF1X standard
can address concerns shared by systems analysts and
database designers.

3.2.3 Architecture Models and Languages

Model A description that hides some details of the things described.
Often, an architecture artefact or view that is drawn in the
form of a diagram. A limited representation of entities and
events in the world that is monitored by a system.

Idealisation hierarchy The idealisation hierarchy of conceptual model, logical model
and physical model.

Conceptual (or domain)
model

A logical model that defines terms and concepts in a business
or problem domain without reference to any computer
application.
In MDA, a computation-independent model (CIM).

Logical model A model that excludes details of physical implementation.
In MDA, a platform-independent model (PIM) that is unrelated
to a specific technology (though may be related to an industry
standard).

Physical model A model that includes details of physical implementation.
In MDA, a platform-specific model (PSM) that is related to a
specific technology, and may include specific infrastructure
functions.

Model-Driven Architecture
(MDA)

A vision of the Object Management Group that encourages
vendors to develop tools that help transform a conceptual
model to a logical model, and a logical model to a physical
model, and the reverse.
A transformation may be forward engineering or reverse
engineering.

System modelling
techniques

Types of diagram used to model a system’s structure or
behaviour. Most of the diagrams and notations used by
architects emerged out of ways to define software system
architectures. Divided by BCS into structured and UML
variants.
Models commonly used by architects include process
models, data models, context diagrams, use case diagrams,
data flow diagrams, and interaction/sequence diagrams.

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 23 of 65

Modelling language A standard that defines box shapes and line symbols for
drawing node-arc diagrams to represent relationships
between things.

Integration DEFinition (IDEF)
language

A modelling language in the field of systems and software
engineering. Includes IDEF0 for system or process structures
and IDEF1X for data structures.

Unified Modelling Language
(UML)

A modelling language maintained by the Object Management
Group. Designed to help in object-oriented software design,
though often used outside of that domain. Includes use case,
activity, class and sequence diagrams.

ArchiMate A modelling language maintained by the Open Group.
Designed to help in architecture description. Components,
interfaces and services are shown in distinct boxes. Overlaps
with UML but mostly more abstract.

3.2.4 Architecture Description Structures

Architecture repository An information base used by architects. A system that holds
and manages all the meta data that describes an enterprise
and its information systems.
The content of the repository can be categorised in many
ways, including tabular classifications such as the Zachman
Framework and the Enterprise Continuum.

Zachman framework “A logical structure for classifying and organising the
descriptive representations of an Enterprise that are
significant to managers and to developers of Enterprise
systems.”
Drawn as table or grid: the 6 columns are primarily analysis
questions. But they are also interpreted as architecture
domains (data, process, network etc.).
The 6 rows are primarily levels of idealisation-realisation from
highest level context to operational systems, but they are also
interpreted as stakeholder groups and architecture
viewpoints. Zachman says the rows should not be interpreted
as levels of decomposition.

Enterprise continuum A structure for architecture description documentation used in
TOGAF. A classification scheme for the contents of an
architecture repository.
Drawn as a table or grid, the rows are similar to those in the
Zachman Framework. The columns are a spectrum from
universal to unique.
The 4 columns represent generalisation-specialisation,
ranging from universal to bespoke or uniquely configured.
� Foundation: Structures and items that are universal.
� Common systems: Structures (composed of foundation

items) that are used across most business domains.
� Industry: Structures and items used by enterprises in one

business domain (say Telecoms or Banking).
� Organisation: Structures and items specific or bespoke to

a single enterprise.
The 4 rows represent levels of idealisation. From top to
bottom:

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 24 of 65

� Requirements and context. [See architecture precursors.]
� The architecture continuum. [Defined below.]
� The solution continuum. [Defined below.]
� Deployed solutions (architecture implementations).

Architecture continuum A higher-level spectrum in the enterprise continuum, which
contains logical or vendor-neutral specifications of
requirements. It corresponds to the logical model level of the
idealisation hierarchy.

Solutions continuum A lower-level spectrum in the enterprise continuum, which
contains specifications of products and services that
implement the logical specifications. It corresponds to the
physical model level of the idealisation hierarchy.

Reference model A relatively abstract model people use as a guide in creating
their own more specific model. Typically, a structure of
components, services, processes or data entities. Sometimes
for a specific industry or business domain. A kind of design
pattern.

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 25 of 65

4. Business Architecture

This section is about one of the primary Architecture Domains defined in the first section of this
reference model.

4.1 Foundation Terms and Concepts

Business goal A goal of an enterprise or organisation. [See Goal.]

Business objective An objective of an enterprise or organisation. [See Objective.]

Enterprise A business or organisation with common goals and budget, in
the public or private sector.
A part of the real world that is directed and controlled by a
management board to some human purposes, in which
players cooperate to meet goals and objectives.
Usually the highest level of an organisation, spanning several
relatively distinct organisation units.
Usually a human activity system that involves people,
processes and technologies.
Usually maintains resources and properties.
Usually governed according to principles and policies.

Business An enterprise or organisation that offers products and
services to its customers in return for payment or funding.

Organisation A synonym for the management structure of an enterprise or
business.

Organisation unit A physical subdivision of an enterprise’s organisation.
Usually given a manager, goals, budget and employees.

Management structure The structure of organisation units defined by its managers.
Usually a hierarchy decomposed to bottom level (elementary)
organisation units. Usually shows the reporting line up from
each bottom-level manager to the management board.
Sometimes a matrix.

4.2 Intermediate Terms and Concepts

4.2.1 Business Architecture Structure and Behaviour

Business function
catalogue or portfolio

A list of business functions, usually arranged in hierarchical
structure.
Functions may be arranged in two or more hierarchies.
Functions may arranged in a matrix in which the rows or
columns may titled function, capability or domain.
To validate and complete the business process and business
function structures, some decompose them to the same level
so that every elementary business process step is also an
elementary business function.

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 26 of 65

Business function An idealised or logical subdivision an enterprise’s capability.
An encapsulation of the activities and resources needed to
produce a cohesive set of services and/or products, for
internal or external consumption. It may map to one or more
physical organisation units.
E.g. Marketing, sales, customer services, security,
emergency response. (The examples in this section overlap
because the concepts overlap.)
Bottom level (elementary) business functions are commonly
mapped to business process steps, to data entities and to
organisation units.

Core business functions A business function that is focused on the development,
marketing, sales, creation and delivery of business products
and services (as opposed to a support business function).

Core competency A business function or capability that differentiates one
business from another, if only in the manner that the activities
are carried out. It should be difficult for competitors to imitate.

Support business function A business function that serves core business functions. E.g.
personnel, procurement or finance. Often similar in different
businesses, so an obvious candidate to be out-sourced
and/or delegated to a “shared service”. (Analogous at this
level of definition to a reusable application component, but
very different in practice.)

Business capability A business function whose performance is the subject of
management attention - as for example in Capability Maturity
Models or in Capability-Based Planning. It is usually a high-
level and cross-organisational business function.
E.g. legal compliance, customer service, security, emergency
response. (The examples in this section overlap because the
concepts overlap.)

Capability-based planning Planning in which the focus of managers is to establish or
improve a business function regardless of current
organisation unit boundaries. The end result of capability-
based planning may be that a business capability is given a
manager and becomes an organisation unit.

Business domain The primary business function of an enterprise or
organisation unit. Classifies an enterprise or organisation unit
by the services it offers and/or the expertise it has.
Sometimes a market segment. Sometimes a public sector
domain (say tax collection) that recurs only in different
nations.
E.g. law, employment law, telesales, insurance, airline
operation, airline maintenance, security, emergency
response. (The examples in this section overlap because the
concepts overlap.)

Business process A process that is important to an enterprise, leads to a goal of
the enterprise, or involves people in the enterprise.

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 27 of 65

Value stream A chain of activities; an end-to-end business process that
produces a result valued by the customer. Products pass
through the activities, gaining value at each step.
A key concept in the Six Sigma framework, which is designed
to remove wasteful activities and optimise processes in
product manufacturing industries.
Often shown as a naïve end-to-end business process model,
lacking the formality required for it to be automated.

Value chain A particular kind of value stream featuring core business
functions (inbound, operations, outbound, marketing, sales
and service) and support business functions (HR, R&D,
Procurement).
Introduced in “Competitive Advantage: Creating and
Sustaining Superior Performance” Michael Porter.

Business service (business
sense)

A service or product provided by an organisation unit or
business function to its customers, internal or external.
Defined for its consumers by an interface or service contract,
rather than by internal processes needed to deliver it.
[Analogous in SOA to a software business service, but at a
completely different level of different analysis and design.]

Service-oriented
architecture (business
sense):

An approach that divides a business into distributed
components that offer business services to each other and to
customers. Each component (business function or
organisation unit) may be defined by a Service Level
Agreement.
[Analogous to SOA in software systems, but very different in
practice.]

Business data model A conceptual model of business terms and facts, independent
of any specific computer application. The entities in the
model represent things in the real world. May also be known
as a domain model.
It usually takes the form of a data structure that defines
business terms and concepts in the form of entities, attributes
and relationships.

Business semantics A definition of business rules: that is, terms, facts, constraints
(on data values and process steps) and derivation rules (for
data items). May be recorded in a data dictionary, a business
data model and/or the pre and post conditions of processes.

Business model A term used by business managers to mean various things
other than a business architecture diagram.
1. The way an enterprise delivers products and/or services to
its customers, determined by its business strategy.
2. The operating model, sometimes expressed in terms of
how far the business processes are or should be
standardised and integrated (after Ross, Weill and
Robertson).
3. A what-if model of business operations, perhaps in
spreadsheets or animated workflow models.

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 28 of 65

4.2.2 Business Process Decomposition and Automation

Process map A top-level picture of a business in which its processes are
named. The processes are not connected, or connected by
dependencies rather than control flow. Might be drawn as a
use case diagram. Might be arranged in swim lanes.

Business process
decomposition

The hierarchical decomposition of a process into lower-level
processes. Every business process step may be defined as a
process in its own right.
To validate and complete the business process and business
function structures, some decompose them to the same level
so that every elementary business process step is also an
elementary business function.

OPOPOT One person, one place, one time. A rule of thumb used to
define the bottom level of business process decomposition.

Process automation
hierarchy

The hierarchy within an enterprise, system or project of
business processes
use cases
automated services.
[See applications architecture for further discussion of
process decomposition.]

Information system service A use case or automated service provided by one application
to another, or to an end user.
[See applications architecture for further definitions.]

Workflow 1: the assignment of business process steps to actors in an
organisation.
Or 2: the logic or control flow of a process.
Or 3: a technology that helps people to define or change one
or both of the above.

4.2.3 Design for Business Security

Design for human and
organisational security

Definition of all the things that can be done outside of
software systems to secure business information, such as
security guards, locks, definition and roll out of policies and
procedures.

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 29 of 65

5. Data Architecture

This section is about one of the primary Architecture Domains defined in the first section of this
reference model.

5.1 Foundation Terms and Concepts

Entity A structural thing that persists. A thing that is created,
affected and ultimately destroyed by events.

Event A behavioural thing that happens. May create or destroy an
entity, or move an entity from one state to another in its
lifecycle. May affect several entities.

Data Can be divided into structured and unstructured data. [This
reference model focuses on structured data.]

Information 1: Data at the point of use by an actor in a business system.
Or 2: unstructured data as opposed to structured data.

Structured data One or more items (atomic facts) that describe one or more
entities or events. Contained in data flows and data stores.

Data item An elementary unit of information, a fact about an entity or an
event. An attribute of an entity in a data model or an event in
a data flow structure. A variable containing a value that is
constrained by a type.

Data structure A structure that arranges data items in one or more groups.
May be defined in logical model or at a physical level in an
XML schema or a database schema.

Data entity The representation of an entity as a data structure that
persists in a data processing system. Often records the state
of a business process.

Data event The representation of an event as a data structure in a data
flow input to one or more data processing systems.

Data lifecycle The life of a data entity expressed in terms of the states it
passes through from creation to deletion, and data events
that cause state transitions.

Type A generalisation; a form or structure common to several
things; a constraint on an instance shared by all instance of
that kind.

Data type A type that defines the properties shared by instances of a
data item or larger data structure. It constrains the values of
the data. It defines the processes that can legitimately be
performed on the data.

Data type (primitive) A data type defined in a programming language. e.g.
alphanumeric string, integer, floating-point number (decimal),
and boolean.

Data type (user-defined) A data type defined by systems analysts that is bespoke to
the business at hand. e.g. customer, order, product.

Constraint (rule) A business rule that limits the values of a data type.

Derivation rule A business rule that defines how the value of a data item is
derived from the value of one or more other items (a special
kind of constraint).

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 30 of 65

Meta data Data that describes data. Includes data structures, data
types, business rules, data locations and data qualities.

Data dictionary A catalogue of data item types, which may include business
rules.

File A synonym of data store; any identified collection of data
stored in the computer. May be used in a data flow. May be
saved for future use. Sometimes means more specifically a
“flat file”, a data store in which data is stored and accessed in
sequence, starting at one end.

Data source Any data store, actor or component from which data is
received by an application.

5.2 Intermediate Terms and Concepts

5.2.1 Unstructured data management

This entry is out of scope for examination purposes. The choice of content, document and
knowledge management applications is as much or more a matter for applications architects than
data architects.

Content management The organisation, processes and tools for producing, storing,
editing, sharing and searching any unstructured data.
Roles can include creator, editor, publisher, administrator
(managing access permissions etc.) and consumer, viewer or
guest.

Document management A subtype of content management focused on electronic
documents and document images. Usually includes
processes for:
� Capture, indexing, attaching meta data
� Storage, security
� Searching, retrieval
� Distribution, publishing
� Collaborative, configuration management
Often associated with workflow systems.

Knowledge management A subtype of content management focused on the knowledge
of an enterprise and on capturing lessons learned. Typically
supported by collaborative applications.

5.2.2 Data Architecture

Data in storage Those aspects of data architecture relating to data that
persists in a location.

Data store A data structure that is held in persistent memory. Any file or
database from which data can be extracted by an application.
You can define the state of any data store (be it a database,
cache or component) in a data model (though it may contain
only a flat list of attributes).

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 31 of 65

Data model A schema that groups data items into a data structure and
defines the type of each data item. A structure that defines
the attributes of entities and the relationships between them.
It may include derivation rules for some data items.
A business data or conceptual or domain model is a vehicle
for documenting business semantics.
A logical data model is a definition of the data that must
persist for the processes of an application to work.

State The data structure maintained inside the memory of a
process or component.

Database A persistent data structure that can be accessed by
applications. Usually accessed via a database management
system that enables direct (rather than serial) access to any
part of the data structure.
[See section 12: Enterprise Technology Classification for
definition of database management system.]

Cache A local store of data that has been copied from a master data
store, usually for the purpose of speeding up response or
cycle time.

Data in motion Those aspects of data architecture relating to the movement
of data.

Data flow A data structure that is transported from sender to receiver. It
is carried from data source to destination in a message, file,
report or other data transport vehicle.

Regular expression A hierarchical structure of elements arranged so that every
element is part of a sequence, or is an option of a selection or
is an occurrence of an iteration.
You can define the every data flow structure as a regular
expression (after Kleene’s theorem). Though many
messages contain no more than a list of data items.
[You can also define a process structure as a regular
expression, under a logical control flow in which loops and
alternative paths are governed by conditions.]

Data format A format or language for presenting data flow structures.
E.g. Comma Separated Values (CSV), Extensible Mark Up
Language (XML).

Data format standard A standard for the content of data flow structures.
E.g. EDIFACT, domain-specific XML Schema

Canonical data model The “one true definition” of data types (e.g. customer
address, order value, tax reference number) used by an
enterprise.
A logical data model that defines the data types that appear
in messages between applications, and in the signatures of
automated business services.
Usually applied to data in data flows, as a standard for
integration of applications, but could apply to data in data
stores as well.
A canonical data may be defined at a physical level using
XML schema and other data format standards.

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 32 of 65

5.2.3 Data Qualities and Integration

Data quality A characteristic of a data item, data structure or data store.
Notably: Confidentiality, Integrity and Availability (CIA).

Data integrity Data integrity (1): A data item has the same value in every
part of a distributed system. A fact (e.g. customer name) has
the same value in all locations that data item is stored.
Data integrity (2): A data item obeys relevant business rules,
sometimes in relation to another data item. The value of a
data item is consistent with all invariant business rules e.g. an
order must be for a known customer.
Data integrity (3): A data item accurately represents a fact
about an entity or Event. The value of a data item in a data
processing system is consistent with a fact in the real world.
Data disintegrity is a problem. Data integrity solutions can
involve one-off data quality improvement exercises, data
warehouses and master data management.

Data flow (or message)
integrity

The requirement that a data flow has the same data content
when it reaches its destination as it did when it left its source.

Data dissemination view A view showing the dispersal (and perhaps duplication) of
data between data stores or locations.
Useful in analysis of change impacts, data mastering and
security vulnerabilities.

Data warehouse A kind of database system designed to hold a non-normalised
data structure that is optimised for the production of
management information reports.

Master data management The systems and processes that enable an enterprise to
maintain and/or find one “master” version of any data item or
data structure, typically customer or product data. Supported
by a range of approaches and technologies, including
middleware technologies that hide the reality of multiple
disparate data sources from data consumers.

5.2.4 Design for Data Security

Data security 1: Confidentiality alone. Or 2: a combination of Confidentiality,
Integrity and Availability.
Tom Peltier suggests rating the security level of a data item,
data structure or data store as equal to the highest of the
individual ratings (high, medium, low) awarded for
Confidentiality, Integrity and Availability.

Security protection Prevention of access to data designed to maintain the
required data qualities of confidentiality, availability, and
integrity.

Security feature A feature of a system that enables its data and processes to
be protected.
E.g. Encryption, Checksum, https.

Security policy A policy that defines which actors have (or do not have)
Access rights to objects in a given domain - along with any
other protections.

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 33 of 65

Information domain A uniquely identified set of objects with a common security
policy. Access to any data within the domain limited and
constrained by the same rules.

Identity One or more data items (or attributes) that uniquely label an
entity or actor instance.
E.g. passport number or user name.

Encryption A process to encode data items (in a data store or data flow)
so that they are meaningless to any actor who cannot decode
them.

Checksum A redundant data item added to a message that is the result
of adding up the bits or bytes in the message and applying a
formula. This enables the receiver to detect if the message
content has been changed. It protects against accidental
data corruption, but does not guarantee data flow integrity,
since it relies on the formula being known only to sender and
receiver.

Digital signature A cryptographic scheme that simulates the security properties
of a handwritten signature. More secure than a check sum, it
is said to guarantee the data flow integrity of a message,
since the signature is corrupted if the message content is
changed.

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 34 of 65

6. Software Architecture

This section is about the internal structure of applications defined in applications architecture.

6.1 Foundation Terms and Concepts

Modular design The design-time organisation of a system into components, or
a process into sub-processes.
You can divide a system or process into smaller modules by
top-down decomposition of its structure or behaviour.
You can compose entities or processes into larger modules
by bottom-up cluster or affinity analysis.

Client An actor, computer or software component that requests one
or more services from a server. In software, the request is
usually called an invocation.

Server An actor, computer or software component that can provide
one or more services in response to requests from a client.

Design time structure and
runtime behaviour

Design time is when a structure of components is defined.
Run time is when those components work and interoperate.
An architect should have a good idea of how a design-time
structure will behave at run time, since that is critical to
meeting non-functional requirements.

Encapsulation The enclosure within a component of processes, meaning
that the inner workings are invisible to outsiders. Also the
enclosure within a component of data, so the only way to
access that data is by using the interface of the component.
(Components whose state is persisted outside of the
component often turn out to be pseudo components; they
have an interface but do not encapsulate state, so external
processes may read or update that data).

Cluster or affinity analysis Techniques for finding and grouping items based on
characteristics they share. An aim is to encapsulate cohesive
items in one component, and minimise the couplings between
components. Cohesive means closely related, inter-
dependent or tightly-coupled by time, location, acquaintance,
protocol or other ways. [See tight-coupling for more detail.]

Stateless Characterises a component or service that has only a
transient state. Its working storage is discarded at end of the
process. It does not persist between invocations (or at least,
does not remember any data it worked on last time).

Façade A frontage to a building. An interface component that sits in
front of a system and shields clients from some kinds of
change to that system. Often, stateless.
Used to reduce the coupling between client and server
components. Used to aggregate services into a coarser-
grained component.

Transactional Characterises a service that can be completely and
automatically rolled back if anything goes wrong. A desirable
property in that it saves design effort and preserves integrity.

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 35 of 65

Delegation One process or component calls on another to do the work,
invoking it by passing a message (rather than by inheritance).
May call a stateless façade.

Dependency A relationship between two parties in which any change to the
depended-on party implies an impact analysis of the
dependent party.
Often reflects a client-server invocation, or delegation to a
server. Often represents a run-time relationship.

Cyclic dependency A relationship in which two or more components depend on
each other. Considered to be an architectural flaw - fragile
and unstable - difficult to understand and maintain. Software
with many cyclic dependencies is said to undermine
testability, parallel development, and reuse.
However, large-scale business components (e.g. Customer,
Order, Product) are inevitably co-dependent.

Hierarchical (non-cyclic)
dependency

A relationship in which higher-level components depend on
lower-level ones, but not vice-versa.
E.g. client components depend on server components, and
application components depend on infrastructure
components, but not vice-versa.

Service quality A characteristic of a service in a well-designed architecture.
A service conforming to Web Service standards has four such
qualities: it is an abstraction, composable, loosely-coupled
and defined by a contract. Beyond that, a well-designed
service should be reusable, autonomous, discoverable and
stateless.
These eight qualities were suggested by Thomas Erl; and for
simplicity, a service should be transactional as well.

Service-oriented design A methodology that matches required services to available
services. Required services are discovered though
decomposition of high-level business process and use cases.
Available services are discovered in some kind of services
catalogue and invokable across a network via some kind of
services directory.

Service-oriented design
challenges

Obstacles to successful service-oriented design. Notably:
service ownership, maintenance of shared services,
versioning strategy. Governance of the service catalogue,
avoiding vendor lock in, management of service-oriented
design methodology across the enterprise.
As a service consumer, you don’t want service owner to
change the interface unless you ask, or refuse to change it
when you do ask.

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 36 of 65

6.2 Intermediate Terms and Concepts

6.2.1 Component Interfaces

Application Programming
Interface (API)

An interface used to invoke the services of an application, or
more usually, an application platform technology.

Interface Description
Language (IDL)

A language for defining an API that is, ideally, independent of
the technology used to implement the component behind the
interface. Enables communication between components in
different languages and running on different operating
system. An interface generator (pre-compiler) reads the IDL
to create a header file for use by client and server, and client
and server stubs.

Realisation (software
sense)

The act of providing an implementation for an interface. A
service is an abstract thing until there is a system or
component to implement it.
One component may realise (publish or offer) more than one
interface e.g. older and newer versions, or full and restricted
list of services. One service can appear in several interfaces.
Components require interfaces as well as offer them. A
component with a required interface desires to meet a
component with a matching offered interface.

Synchronicity How work, divided between two components, is scheduled.
The two components are called client and server below, but
could be called sender and receiver, or prior and successor.

Synchronous 1: A request-reply style: a client must wait for a server to reply
before continuing. (This is the usual invocation from one
COBOL module to another or one Java object to another.)
Or 2: A blocking style: a server serves one client at a time,
turning away any other client who attempts to request a
service. The caller and responder hold a channel open,
blocking others from using it. (This is the usual invocation
style in CORBA.)

Asynchronous 1: A fire-and-forget style in which a client does not wait for a
server to reply to a request, carries on to do something else.
A call-back mechanism may be needed.
Or 2: A non-blocking style in which a server can accept
requests from several clients before responding to the first
request. The channel is released after a message is
received. This implies the responder holds a queue of
messages received. (This is the usual style in Web Services.)

Loosely-coupled Communicating parties are not related by:
� Time: Parties communicate asynchronously and need not

be deployed together.
� Location: Parties do not know each others’ Locations

Acquaintance: Parties do not know each others’ names,
or know only logical rather than physical names.

� Data types: The request or reply data has simple or weak
data types.

� Operation types: Clients use the same names for
different services.
Interaction style: Messages rather than objects

� Control logic: Distributed (chain) logic

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 37 of 65

� Transaction management: The service cannot be rolled
back, compensating transactions may be needed.

� Version: Clients are not needlessly affected by upgrades
to services.

� Protocol: A client can use any of several protocols to call
a service.

Tightly-coupled Communicating parties are related by some of these
cohesion factors:
� Time: parties communicate synchronously and are

deployed together.
� Location: parties know each others’ locations.
� Acquaintance: parties know each others’ names, or

depend on physical names
� Data types: The request or reply data has complex or

strong types.
� Operation types: clients use many different names for

different services
� Interaction style: objects (perhaps requiring knowledge of

an inheritance structure) rather than messages.
� Control logic: centralised (fork) logic.
� Transaction management: The service is roll-backable.
� Version: clients are needlessly affected by upgrades to

services.
� Protocol: a client must use one protocol to call a service.
� (Combining lists published separately by Thomas Erl and

Nicolai Josuttis).

6.2.2 Component Structures and Patterns

Component structure or
pattern

A shape in which components are organised and interoperate
to complete a higher level process.

Design pattern A form or shape you can reuse in the design of different
systems, to address similar issues. A common modular
structure, or a pattern in how components communicate.
Patterns often come in pairs; and there are trade offs
between a pattern and its obverse.
The use of design patterns encourages consistency and
reduces the risk of reliance on an individual designer.

Hierarchical and peer-to-
peer structures

Two contrasting ways to organise a structure of modules.
A hierarchical design is one-way structure in which a client of
party X cannot also be a server of party X.
A peer-to-peer design has no hierarchy, meaning that any
party can be both a client and server of any other.

Fork and chain structures Two contrasting ways to divide a process between
components, so they transform input into output in a series of
relatively simple incremental steps.
The fork pattern centralises intelligence about a process
sequence. One controller supervises and orchestrates the
procedure. It manages the sequence of activities by invoking
components in turn. (Analogous to, if not the same as, a
pattern known as process manager.)
The chain pattern distributes intelligence about a process
sequence. Each component does part of the work, then calls

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 38 of 65

the next component. The system works by choreography
rather than orchestration. (Analogous to, if not the same as, a
pattern called pipe and filter.)

Model-View Controller
(MVC)

A pattern for software modularity that separates user
interface “views” from the state of the data entities that
“model” the world monitored by the system.
Either, controllers pass state-change events from the model
to view-handlers that update the user interface (MCV).
Or, controllers pass state-change events from the user
interface views to the model that holds the state (VCM).

Controller 1. The manager or orchestrator component in a Fork pattern
2. A central component in the MVC pattern, the intermediary
between the user interface and the data.

OO Design pattern A pattern used in the design of object-oriented (OO) software.
Usually solves a common design problem by placing a broker
component between client and server components.
A pattern for the modularisation of OO classes that is usually
presented as a class diagram. This may be supplemented
with an object diagram or interaction diagram.
The most famous reference is “Design Patterns: Elements of
Reusable Object-Oriented Software” [Gamma et al. 1995].
Some of their patterns are generalisable and useful outside of
OO software, including Façade and the patterns below.

Singleton A component (or class) with only one instance (or object).

Proxy A surrogate for a distributed component. Used in distribution
of code between different name spaces. Simplifies the
interoperation of distributed components in DO and SOA
interoperation styles, and in CORBA, DCOM and Web
Services technologies.

Adapter A wrapper that converts a provided service into a required
service. Facilitates the reuse of existing technologies.

Observer A component that monitors the state of another component.
Curiously, the subject of observation may be an object.

6.2.3 Component Interoperation Styles

Component interoperation
style

A paradigm, exemplar or pattern for how components
interact. Four styles, varying from tightly-coupled to loosely-
coupled, are DO, SOA, REST and EDA.

Distributed Objects style
(DO)

A component interoperation paradigm in which an object on
one computer invokes an operation on another object on
another computer.
In the classic distributed objects style:
� the interaction is request-reply
� the invocation is an object-method pair
� the server component is a stateful object (persists

between operations).
� the server is synchronous (blocking)
� a connection is maintained while the service request is

processed
(The idea is to scale up object-oriented program design from
one computer to many - the wider system looks and behaves

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 39 of 65

like one object-oriented program - the programmer writes
code as though all the objects are local, and call each other
directly).

Service-Oriented
Architecture style (SOA)

A component interoperation paradigm in which a process on
one computer invokes a process on a remote computer by
passing a message.
This style is a contrast to the DO style, meaning that:
� the interaction is request-reply or fire-and-forget
� the invocation can be a plain operation call (rather than

an object-method pair)
� the server component is stateless (rather than stateful)
� the server is asynchronous (rather than blocking)
� no connection is maintained while the service request is

processed
SOA is commonly associated with the use of web services,
though these can be used to implement other styles.

Representational State
Transfer style (REST)

A component interoperation paradigm in which a client
identifies resources using a URI and invokes a process on
that resource using only the generic operations in an internet
protocol API – usually HTTP.
A resource is anything can be found at a URL, including text
and executable code. A client does not need to know the
extent or structure of the resource set.
A resource representation usually contains URLs that enable
the client to navigate to related resources.
A client does not need to know the names of any operations
specific to any resource. A client can retrieve a representation
of any resource using the GET operation, and update that
resource using PUT, POST and DELETE operations.

Event-Driven Architecture
style (EDA)

A component interoperation paradigm in which any
component can read, or subscribe to receive, an
event/message published by any other component.
This is a fire-forget style. It means that senders and receivers
are very loosely-coupled. It implies a mediator or shared
memory communication style.

6.2.4 Component Communication Styles

Component
communication style

The manner in which components interact (as client and
server, or sender and receiver), which can be direct or via
intermediaries. There are three broad categories:
� Point to point
� Introduction agent (aka direct broker)
� Mediator (aka indirect broker).

Point-to-point
communication

A sender (or client) is coupled to a receiver (or server). More
precisely defined by two features:
1) The sender is responsible for knowing or determining

both the location of the receiver, and a protocol and data
format the receiver understands.

2) A message is sent by one sender and received by one
receiver.

Strength: simple to implement. Weaknesses: potential
duplication of data transformation and routing code, high

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 40 of 65

configuration cost of receiver address changes.
[See section 12: Enterprise Technology Classification for
tools that implement this style of communication.]

Introduction agent (direct
broker) communication

A direct broker helps parties to communicate. It decouples
clients and servers, at least to the extent that the two parties
can work in different places. It hides some complexities of
the communication transport.
The broker must register parties willing to communicate (end
point registration). The broker can then establish initial
connection when a client requests a service from a server.
Subsequently, the parties communicate point-to-point via
client-side and server-side proxies, which is faster than via a
mediator broker.
[See section 12: Enterprise Technology Classification for
tools that implement this style of communication.]

Mediator communication An indirect broker helps parties to communicate. It decouples
clients and servers by sitting between them. It means the
parties can work at different places and times
(asynchronously). It can shield one party from some effects
of some changes to the other.
It does for components what email infrastructure does for
people, that is, enable them to communicate asynchronously
via messages - rather than talk directly over an end-to-end
network connection kept open for that conversation.

Message broker (indirect
broker)

An active mediator that brokers communication by forwarding
messages from senders to receivers. It:
� provides a shared infrastructure for sending messages to

recipients.
� hides some complexities of the communication transport.
� offers common command messages.
� registers end-point parties willing to communicate.
� enables routing: locates parties and sends them

messages.
� enables transformation: converts data formats.

Message router A message broker that sends a message where the sender
directs. The client communicates the logical name of the
server to the broker. The broker looks up the server that is
registered under the logical name and passes the
communication to the server.
[See section 12: Enterprise Technology Classification for
tools that implement this style of communication.]

Message bus A message broker that is schema-based. It uses a common
data format to reduce the cost of adding and removing
communicating parties. It provides a set of agreed-upon
message schemas, in a common data model.

Passive mediator Any memory space or data store that is shared by two or
more applications. Communicating parties post messages to
it and/or read messages from it. Examples include serial files,
databases and the “blackboard” OO design pattern.

Publish & Subscribe
Distribution

Subscribers register their interest in receiving a message type
with a message broker. Divides into topic-based and content-
based

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 41 of 65

Topic-based publish and
subscribe

Distributes messages depending on their subject line; this
subdivides into broadcast and list based.

Broadcast-based publish and
subscribe

A topic-based distribution. An event publisher creates a
message and broadcasts it to the local area network. Each
listening node has a service node that inspects the subject
line. If the subject line matches a subject the node
subscribes to, then the node processes the message. Else,
the listening node ignores the message.

List-based publish and
subscribe

A topic-based distribution. You identify a subject and maintain
a list of subscribers for that subject. When an event occurs,
the subject notifies each subscriber on the subscription list.

Content-based publish and
subscribe

Distributes messages depending on the content of the
message. Highly configurable, since any combination of
information items can be used to direct messages, and this
gives an exponential enlargement of logical routing
possibilities.

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 42 of 65

7. Applications Architecture

This section is about one of the primary Architecture Domains defined in the first section of this
reference model.

7.1 Foundation Terms and Concepts

Information system (IS) A kind of system that produces information we humans can
process. A data processing system. Can be a paper-based,
mechanical or electronic system. Usually a computer
application that processes data for use by people in a
business system.

User A role or actor outside the boundary of the system being
used. A role or individual who uses an application. Usually
human. “Person that daily uses IT services.” ITIL

Application A system of software components that supports a business
function and/or maintains a data store. Supported by
application platform technologies.
Characteristics include size, owner, cost, value.

Business application An application that helps its users to perform business-
specific tasks.
E.g. order entry system, management information system.
Business applications may be divided into front-office or
Business Support Systems (BSS) and back office or
Operational Support Systems (OSS).

Generic application An application that helps its users to perform generic office
and administrative tasks.
E.g. a browser, word processor, spreadsheet.

Platform application An application that supports business applications – a
component of the application platform.
E.g. a message broker, DBMS or operating system.

Enterprise Resource
Planning (ERP)

ERP is the planning of how enterprise resources (materials,
employees, customers, etc.) are acquired, moved from one
state to another.
An ERP system is a operational and business support system
that maintains (ideally in a single database) the data needed
for some or all of Manufacturing, Supply Chain Management,
Financials, Projects, Human Resources, Customer
Relationship Management, Data Warehouse and
Management Information.

Customer relationship
management (CRM)

CRM is the development and maintenance of mutually
beneficial long-term relationships with customers. It helps
with some or all of the following: attracting customers,
transacting business with customers, servicing and
supporting customer, enhancing customer relationships.
A CRM system is a business support system that helps this
relationship management.

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 43 of 65

7.2 Intermediate Terms and Concepts

7.2.1 Applications Architecture Structure

Application catalogue or
portfolio

A list of applications, usually arranged in hierarchical
structure that reflects the business function hierarchy.

Application portfolio
management

An organisation and processes designed to catalogue,
describe, and value the applications of an enterprise, with a
view to rationalisation or optimisation of those applications.

Applications architecture
structural model

A diagram that shows applications and the data flows that
pass between them. Typically drawn using some kind of data
flow diagram. Where there are too many data flows, they
may be abstracted into dependencies in some kind of
dependency diagram.

7.2.2 Applications Architecture Behaviour

Applications architecture
behavioural model

A diagram that shows how a process works through the
interaction of users and applications. Often drawn using
some kind of interaction diagram. Often used to examine
where time is lost in or between application processing steps.

Information system service
(repeat)

A use case or automated service provided by one application
to another, or to an end user.

Use case A process in which an actor uses a system: a sequence of
transactions. Usually supports an OPOPOT business process
step. Usually has one main path and several alternative (or
exception) paths. The details of each step (including any
automated services invoked) may be documented separately
from the use case itself.

Automated service (SOA
sense)

A software process that a client can invoke. May be classified
as a business service or data service. Often a transaction.

Business service (SOA
sense)

An automated service whose input and output data is defined
in a canonical data model. Can be provided either by a
broker application or an application that encapsulates a data
source, since it is the interface that matters, not the
deployment location.
(Usually at a very much lower level of design than “business”
business service.)

Data service (SOA sense) An automated service whose input and output data items are
defined according to the parochial physical data model of a
specific data source.

Transaction 1: An exchange between a user and a computer in which the
user inputs a command and receives result.
Or 2: A process or unit of work that can be rolled back, for
example if what was specified as a precondition is violated.

ACID Atomic, Consistent, Isolated and Durable. The properties of a
transaction in definition 2.

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 44 of 65

Compensating transaction A backtracking, undo or correction process. It may undo
updates committed to databases, remove messages placed
in message queues, send follow-up correction messages,
report cases of data disintegrity.
A process to handle the side effects of regular process (or
workflow) that started but could not complete successfully –
where that process cannot be implemented as an ACID
transaction.

7.2.3 Applications Integration

Application integration The ends or means of connecting one application to another
such that they contribute to the same output data flow, or
store the same data. Often underpinned by one or more of
the component interoperation and communication styles
defined in the Software Architecture section.

Batch process A kind of process that processes a collection of messages
that have been accumulated in advance in a file or queue.
(Opposite of on-line or transactional process.)

ETL A pattern and/or set of tools for extracting (E) data from data
sources, transforming (T) data items from one format to
another, and loading (L) the reformatted data into data stores.
Often requires data to be cleaned up before or after the
transformation stage,

Application consolidation The integration of applications by merger of distinct
databases into one, so that the previously distinct
applications can also be viewed as one. Not always a good
idea, since a hub application can become a bottleneck in
change management.

Point-to-point application
integration

A pattern in which subsystems talk to each other directly
(rather than via a central hub component, broker or bus).

Hub and spoke application
integration

A pattern in which subsystems communicate via a central hub
component, broker or bus (rather than talk to each other
directly).

Boundaryless Information
Flow

A trademark of the Open Group intended to express the
vision of delivering any data, any time, any place to anybody
who is authorised to view the data.

Integrated Information
Infrastructure Reference
model (III-RM)

A pattern in TOGAF for a service-oriented architecture. User
applications invoke services provided by broker applications,
which in turn invoke services provided by applications that
encapsulate data sources.

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 45 of 65

7.2.4 Design for Applications Security

Identification A process via which an entity or actor reveals their Identity.
Usually followed by authentication.

Authentication A process to confirm or deny that an actor is trusted - is the
entity to which an identity was given. E.g. A password check.
Usually followed by authorisation.
Authentication of an actor produces one of four results: true
positive, true negative, false negative (which leads to
wrongly-denied access) or false positive (which leads to
unauthorised access).

Three-factor authentication Authentication that involves checking three facts about an
identified actor. Factors can include something they:
� remember (e.g. password, mother’s name),
� carry (e.g. credit card or key)
� are (e.g. biometric data.).

Authorisation A process giving access to a trusted actor, based on that
actor’s known access rights. Usually followed by Access.

Access A process to look inside a system to find data (or processes)
of interest. Data can include files containing executable
processes.

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 46 of 65

8. Design for NFRS

This section mentions only a selection of common techniques that could be relevant in answers to
exam questions.

8.1 Foundation Terms and Concepts

None

8.2 Intermediate Terms and Concepts

Design for performance
(response time and
throughput)

The general advice is to look for bottlenecks and tackle them
one by one. Poor performance is very often the result of poor
design, such as needless distribution of processes, wasteful
use of a network or accesses to a database, delays and
failures caused by message queues filling up. Given a
reasonable design, further optimisation often involves running
processes in parallel.

Database optimisation Techniques for optimising processes by eliminating needless
database access. Four of many techniques are listed below.

Normalisation Relational data analysis. A technique for defining a data
store structure that assists data integrity by storing each fact
once. It also optimises update processes by minimising
redundant data storage.

Denormalisation A design technique that optimises input and/or output
processes by structuring a data store structure to reflect the
most important input or output data flow structures, at the
expense of duplicating some stored data.

Index A list of pointers to elements of stored data. Usually used to
optimise output processes. May be temporarily disabled to
optimise on-line update processes (and updated later off-
line).

Access path analysis Study of the route a process takes through a data store
structure. A very common source of performance problems is
that an SQL programmer does not know the access path their
procedure takes through a database. So it is advisable to
use access path analysis and/or employ highly skilled SQL
resources for critical database access programs.

Caching Holding data in a temporary storage area - usually frequently-
accessed data. Placing copies of persistent data in a location
nearer to the user than the original data source. Generally
good for response or cycle time. Can raise concerns about
data integrity and security.

Scale up Increase the power of one processing node. Usually means
add resources (processors or memory) to a node on a
computer network. Generally good for response time and
throughput.

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 47 of 65

Scale out (aka clustering) Increase the number of parallel processing nodes. Usually
means add more nodes to a cluster. Usually requires some
kind of load balancer to sit in front of the cluster and distribute
service requests between them. Generally good for
throughput. Not necessarily good for response time.

Design for resilience
(availability and reliability)

The primary technique is to build redundancy into the system.
E.g. to scale out, or add one to the number of servers in
cluster that calculation or prototyping suggests is needed.
Designers can also provide failover capability and/or
defensive design and programming techniques.

Fail over Automatic switch over to a redundant or standby computer
server, system, or network upon the failure or abnormal
termination of the previously active server, system, or
network. Failover happens suddenly and generally without
warning.

Defensive design Designing a client component so that it does not fall over if a
server component does not work properly, which implies
asynchronous invocation.
Or designing a server component so that it does not depend
on its input data being valid, which implies testing all data
types and business rules before processing. The opposite of
“design by contract”.

Design for recoverability The principal technique is to back up and provide some kind
of switch-over or fail-over procedure. Procedures must
address also “fail back”, to return operations from a disaster
recovery site to the normal production site.

Back up A copy of data that may be used to restore the original after
data loss. Used in disaster recovery. Also used to restore
individual files that have been deleted or corrupted.
Backups are typically the last line of defence, coarse-grained
and can be inconvenient to use.

Backup site A location where systems are or can be duplicated. A cold
site has no equipment. A warm site has infrastructure but no
up-to-date data or software. A hot site has up-to-date
software and more or less up to date copies of data.

Design for integrity The two general techniques are to reduce data replication
and ensure updates are made via ACID transactions.
More specific techniques are: normalise stored data, switch
on automated referential integrity checks, apply transaction
management to update processes, remove caches, and
consolidate distributed databases.

Design for serviceability The principal technique is to instrument applications so that
they report on what they are doing, and how well they are
doing it.

Design for security Design for security is addressed elsewhere in this reference
model under the headings of business, data, applications and
infrastructure architecture.

ISO/IEC 17799 Information technology: Code of practice for information security
management.

ISO/IEC 24762:2008 Information technology — Security techniques — Guidelines for
information.

ISO/IEC 27001 Information technology — Security techniques — Information
security management systems — Requirements.

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 48 of 65

9. Infrastructure Architecture

This section is about one of the primary Architecture Domains defined in the first section of this
reference model.

9.1 Foundation Terms and Concepts

9.1.1 Basic Infrastructure Components

Node A node on a computing network. A physical node is a
computer, switch, router, bridge, repeater or any other device
attached to a network. A logical node is a web server, app
server, database server or other platform for application
software.

Computer The primary component of IT systems. A system that can
execute stored programs. A hardware device that contains a
processor. May take the role of a client and/or server.

Processor (CPU) The part at the heart of a computer that reads and executes
elementary software instructions. The power or speed of a
processor may be increased by various kinds of parallel
processing.

Operating System (OS) The bottom level platform application, which enables other
applications to execute instructions on the hardware.

9.1.2 Network scopes

Network 1) Generally: a structure of links in which arcs connect
nodes, lines connect boxes, relationships connect
entities, or channels connect inter-communicating
components.

Or
2) More specifically: a set of communications links that

enables one computer or electro-mechanical device to
receive data sent by another. There are computer
networks and phone networks.

PAN, LAN, MAN, WAN Personal, Local, Metropolitan or Wide Area Network.

Virtual Private Network
(VPN)

A network in which communication between nodes is carried
by connections within some larger network (usually the
Internet) instead of by physical wires. Uses a WAN but feels
like a LAN. The link-layer protocols of the virtual network are
said to be tunnelled through the wider network. Can reduce
costs. Can raise security concerns.

Cloud computing The provision of computer power, data storage and
application services over the internet. Remote hosting of
enterprise applications in a “virtual data centre” managed by
a service provider.

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 49 of 65

9.1.3 Network topologies

Topology The shape of a network or communication routes over a
network.

Topology shape A shape that connects nodes or constrains communications
routes over a network. The four classic IT network shapes
are point-to-point, bus, hub and ring. Another shape is a grid.

9.1.4 Network layers

Network Layer A level in a hierarchy of communication layers. Five typical
levels are outlined below.

Application or component
connection level

The top level - where application components communicate.
[See other sections for discussion of topologies at this level.]

Transport level Manages the end-to-end control of message delivery. For
example, determines whether all packets have arrived. May
check for errors and ensure complete data transfer.

Network level Handles the routing and forwarding of data at the packet
level. Sends outgoing transmissions in the right direction to
the right destination. Receives incoming transmissions.

Data transport level The level at which data is transported around the physical
network by network communications software. Provides
synchronisation for the physical level. Does bit-stuffing for
strings of 1's in excess of 5. Furnishes transmission protocol
knowledge and management
A topology at this level describes sequence and protocol that
physical nodes use to communicate.
E.g. Ethernet is based on a bus topology. First designed so
all packets were sent to all nodes on the same network
segment. Each node listens to all packets and filter out
unwanted ones.
Token passing (IEEE 802.5) is based on a ring topology.
Each node connected to the next node. Nodes pass a
message around in a circular fashion until it arrives at the
intended destination.

Physical level The bottom level, where nodes connect to a physical network
medium. Conveys the bit stream through the network at the
electrical and mechanical level - provides the hardware
means of sending and receiving data on a carrier.
A topology at this level reflects how wires connect nodes.

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 50 of 65

9.1.5 Network protocols

Protocol The rules used by message senders and receivers when they
exchange messages via transport mechanisms, by end points
in a telecommunication exchange when they communicate.
Rules may cover a standard format for the header that
precedes the message, the footer than follows the message,
and the sequence in which messages are exchanged.

Protocol Stack Protocols are arranged in layers, corresponding to layers of
platform technologies. The best known protocol stacks are
probably OSI and TCP/IP.

OSI 7-layer Stack A classification (not a formal standard) that divides
telecommunication into seven layers, which technology
vendors use to explain their products.
7: application layer: identifies communication partners and
quality of service, authenticates users, considers privacy,
identifies constraints on data syntax.
6: presentation layer: usually part of an OS that converts
incoming and outgoing data from one presentation format to
another (for example, from a text stream into a popup window
with the newly arrived text).
5: session layer: sets up, coordinates, and terminates
conversations, exchanges, and dialogs between the
applications at each end. It deals with session and connection
coordination.
4: transport layer: manages the end-to-end control.
3: network layer: handles the routing and forwarding of data
at the packet level.
2: data-link layer: provides synchronisation for the physical
level.
1: physical layer: conveys the bit stream through the
network at the electrical and mechanical level.
(after Whatis.com)

TCP/IP 5 layer stack An alternative to the OSI model which collapses the upper
three layers and uses the same names for slightly different
layers. E.g.
5: application layer: DNS · FTP · HTTP · IMAP4 · POP3 ·
SIP · SMTP · RPC · TLS (and SSL) · SOAP· (more)
4: transport layer: TCP · UDP · (more)
3: network/internet layer: IP (IPv4 · IPv6) · OSPF · (more)
2: data link layer: 802.11 (WLAN) · 802.16 · Wi-Fi · WiMAX ·
Token ring · Ethernet (more)
1: physical layer: Ethernet physical layer · Modems · Optical
fibre · Coaxial cable · Twisted pair · (more)
(after Wikipedia)

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 51 of 65

9.1.6 The internet

Internet Protocol (IP) A protocol to send data across a packet-switched
internetwork.

IP address An IP4 address is made from four numbers. (E.g. Binary:
10010110.11010111.00010001.00001001, or Decimal:
150.215.017.009.)
The 4 numbers are used for two addresses: the network
address (first 1, 2 or 3 numbers) and the host computer
address (last 1, 2 or 3 numbers.
IP6 numbers are not discussed here.

Subnet The network administrator can divide the host part of the IP
address so as to identify both a subnet and a host.

Convergence (of telecom.
media)

The enabling of one operating platform to supply many
media. The merger of telecom, data processing and imaging
technologies. So fixed, mobile, and IP service providers can
offer content and media services. Enables equipment
providers to combine voice, data and images in services
offered to the user.

Voice Over IP (VoIP) Also known as IP Telephony (IPT). Promoted as offering
lower network installation and management costs, lower
voice phone tariffs and mobility of phone numbers.

9.2 Intermediate Terms and Concepts

9.2.1 Infrastructure services and components

Infrastructure service A term that can be interpreted at several levels and in
different ways. For example:
A basic service such as computing power or memory,
provided by real or virtual computers.
A platform service. [See below.]
An operational service such provided by an IT services
management tool or organisation. [See “IT Service”.]

Platform service A service such as transaction management or user access
control, provided by one or more platform technology
components to applications. [See TRM.]

Technology catalogue or
portfolio

A list of technology components types in a baseline or target
architecture, usually arranged in the hierarchical structure of
an enterprise technology classification. [See ETC.]

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 52 of 65

9.2.2 Enterprise technology rationalisation

Technology rationalisation A process for studying the services provided by a baseline
technology infrastructure and defining a de-duplicated target
architecture:
1. Classify baseline platform technologies [See ETC.]
2. Catalogue baseline technologies
3. Classify baseline platform services [See TRM.]
4. Catalogue baseline platform services
5. Define target platform services
6. Define target technology components
7. Plan baseline-to-target migration
8. Govern delivery of the change.

Enterprise technology
classification (ETC)

A structure for a catalogue of technology components, with
headings such as those below.
� Client (user access) devices
� Generic user applications
� Application platform
� Software development
� Integration tools
� Data management
� Servers
� Data storage
� Networks
� IT Services Management / operations
� Environment
� Security
[See section 12 of this reference model for further detail.]

Technical Reference model
(TRM)

A logical and hierarchical classification of the platform
services provided by infrastructure technologies to
applications. Can provide a requirement specification for
technology rationalisation.
For example, the service categories in the TOGAF Technical
Reference Model include:
� Data Interchange Services
� Data Management Services
� Graphics and Imaging Services
� International Operation Services
� Location and Directory Services
� Network Services
� Operating System Services
� Security Services
� Software Engineering Services
� System and Network Management Services
� Transaction Processing Services
� User Interface Services
� Quality of Service

Virtual machine Software that enables application programs to run above –
decoupled from - the underlying operating system and/or
hardware processor.
Enables applications to be moved between different operating
systems and/or processors; and enables server
consolidation.

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 53 of 65

Server consolidation A programme of work to deploy current or baseline
applications to fewer servers, usually involving virtualisation.

9.2.3 Solution technology definition

Solution technology
definition

A process that progresses through stages from a logical
application-information view through progressively more
physical views up to a hardware configuration diagram.
A process for defining the technologies that will support and
run an application that includes the activities such as:
1. Clarify the precursors, requirements and context
2. Establish baseline opportunities and target constraints
3. Define client-end devices
4. Define data servers
5. Define intermediate servers
6. Map software layers to platform and hardware tiers
7. Define the network
8. Iteratively refine to handle non-functional requirements
9. Define the environment strategy.

Hardware configuration
view

1: A physical system; a structure of nodes connected via one
or more networks.
Or 2: A logical model of 1.

9.2.4 Connecting Applications to Networks

Network address The address of a computer on a network; can be any of a
variety of address types, mostly notably MAC address and IP
address.

MAC address A quasi-unique identifier (physical address) assigned to most
network adapters or network interface cards (NICs) by the
manufacturer for identification. If assigned by the
manufacturer, a MAC address usually encodes the
manufacturer's registered identification number.

IP address A numerical identification (logical address) assigned to a
node in a computer network that uses the Internet Protocol
for communication between its nodes.

Service Type A protocol for computer I/O (e.g. file transfer, web access, or
email)

Port A computer’s network address has thousands of logical ports
for sending and receiving data. Each port sends or receives
data using one protocol or service type.
An international standard defines default port numbers. E.g.
An http: (unsecured) URL typically uses port 80.
An https: (secured) URL typically uses port 443.
An SMTP server typically uses port 25.
A POP3 server typically uses port 110.
However, the choice of port number is an architectural design
decision. E.g. A security architect might ban the use of port
80 for http.

Socket A socket (a software thing) is the use of a port to input/output
a service type via a network. A socket is identified by a logical
network address and a port number (which is used for a

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 54 of 65

service type).
E.g. Socket = port 80 for http: at IP address
nnnn.nnnn.nnnn.nnnn.

Active process A computer can run several applications (e.g. browser
instance, email software) at once; each has a process
number.
A process can use several sockets, for different kinds of input
and output. Several processes can use the same socket.

9.2.5 Design for Infrastructure Security

Design for infrastructure
security

Techniques for protecting client and server computers from
malicious access.

Client security Features that protect client-end computers from malicious
access.

Server security Features that protecting server computers and databases
from malicious clients.

Firewall Software at the boundary of a network that is used to detect,
filter out and report messages that are unauthorised and/or
not from a trusted source.

De-Militarised Zone (DMZ) An area of a network, usually between the public internet and
the enterprise network. It uses firewalls to filters out
messages that fail security checks. It contains servers that
respond to internet protocols like HTTP and FTP.

https The combination of a normal HTTP interaction over an
encrypted Secure Sockets Layer (SSL) or Transport Layer
Security (TLS) connection. This ensures reasonable
protection of data content from those who intercept the data
flow in transit.
An https: URL may specify a TCP port. If it does not, the
connection uses port 443 (whereas unsecured HTTP typically
uses port 80).

Web site security Usually, a process whereby a web browser checks the public
key certificate of a web server at the other end of an https
connection.
The aims are to check the web server is authentic (who it
claims to be) and that messages to/from with the web server
cannot be read by eavesdroppers.

Public key certificate An electronic document that enables a web server to accept
https connections, or to verify that a public key belongs to an
individual.
It incorporates a digital signature to bind together a public key
with an identity (the name of a person or an organisation,
their address, and so forth).

Certificate authority The web site administrator must get a public key certificate
signed by a certificate authority. This signature certifies
(authenticates) that the certificate holder is the entity it claims
to be.
Web browsers are generally distributed with the signing
certificates of major certificate authorities, so that they can
verify web-server certificates.

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 55 of 65

10. Migration Planning

This section addresses the process of turning baseline and target architecture descriptions into a
plan for a programme or project, and the contributions made by architects to programme/project
planning.

(Note that this section does not set out to compete with established management methods. The
architect should integrate the activities below programme/project management offices approaches
such as MSP, PRINCE2 and PMI).

10.1 Foundation and Intermediate Terms and Concepts

Business case A rationale and business justification for spending time and
money. Generally speaking, the essential elements are
� ROI (benefits – costs),
� Options (business or technical),
� Impacts (work to be done and changes to be made)
� Risks.
These terms are defined separately in this reference model.
There should be a business case for work to describe an
architecture and/or to implement an architecture as
operational systems. An outline business case is needed
before architecture definition starts in earnest. It will be
reviewed and refined several times later in the process, and
perhaps decomposed into business cases for specific options
or projects within the overall solution.

Return on Investment (ROI) A statement of benefits gained minus costs spent.
Costs must cover development, implementation, operation
and maintenance.
Benefits may include money made, money saved, regulations
complied and the resolution of specific problems. E.g. the
benefit of data integrity is to save the cost of data disintegrity.

Cost-benefit analysis An assessment of the costs and the benefits of a course of
action and/or a proposed system.

Solution Options Alternative designs. It is usual, at least at the solution vision
stage, to describe two or more alternatives. They may be
compared at several stages and at several levels of design.
The choice can be guided by:
� cost-benefit analysis,
� risk analysis,
� gap analysis and
� trade-off analysis.

Risk analysis Analysis of vulnerabilities that threaten the ability of a target
system to meet requirements, especially non-functional
requirements, including security.
Risk analysis is needed before architecture definition starts in
earnest, and then several times later in the process, and at
several levels of design.

Gap analysis (options) Generally, a technique for comparing two similar lists or
structures, to find potentially missing items. It can be used to
compare two optional solutions, and identify gaps in one or

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 56 of 65

both.
It helps if the two options are presented under the same
structure as each other, or a more general structure.

Trade-off analysis A process in which a consultant leads analysis of target
system options and the trade offs between them. Published
and promoted by the Software Engineering Institute of
Carnegie Mellon University.

Business scenario [See the definition in section 2.]

10.2 Practitioner Terms and Concepts

Gap analysis (baseline-
target)

Generally, a technique for comparing two similar lists or
structures, to find potentially missing items. Often, it means
comparing the components or services of a baseline system with
those of a target system; and the result of this analysis informs
programme planning.

Migration path or plan Sometimes a synonym for a roadmap, but better used to mean
less - only progressive series of architectures describing
different states of an enterprise or system, from baseline to
target.

Roadmap A migration path/plan with timescales, and perhaps some idea of
costs and resources. Half-way between a migration path and a
project plan.

Critical path analysis A technique to construct a model of the project that includes (i) a
list of all activities required to complete the project (also known
as work breakdown structure) (ii) the duration of each activity,
and (iii) the dependencies between the activities.

Program Evaluation and
Review Technique (PERT)

A method to analyse the tasks involved in completing a given
project, especially the time needed to complete each task, and
identifying the minimum time needed to complete the total
project.

RAID catalogue A catalogue of risks, assumptions, issues and dependencies,
maintained separately from requirements and from solution
documentation. Cf. Risk Register in PRINCE2.

Risk A potential problem; an event that will cause an issue if it occurs.

Assumption Statement that, if not true, could turn into a risk or issue that
threatens the success of a project.

Issue A problem that needs resolution. Sometimes the realisation of a
pre-identified risk, or an assumption that turned out to be false.

Dependency (risk sense) A dependency of a project upon an external actor or deliverable,
not under the management of the project manager.

Management methodology A collection of processes and deliverables designed to guide
people in how to complete a programme, project or service

Programme A set of projects that are related by a common goal or shared
budget, usually under one manager.

Managing Successful
Programmes (MSP)

A methodology for managing programmes, maintained and
published by the OGC. Applicable at the level of enterprise
architecture.

Project A process that consumes time and resources to deliver a
required outcome, usually under one manager.

PRINCE2 A project management method. A well-known methodology
maintained and published by the OGC. Applicable at the level of
an application development project.

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 57 of 65

11. Architecture Management

This section addresses the organisations and processes needed to govern and implement an
architecture description, in development and operation, including the management of changes.

11.1 Foundation and Intermediate Terms and Concepts

None

11.2 Practitioner Terms and Concepts

11.2.1 Architecture Implementation

Architecture
implementation

The realisation of an architecture description as a system,
through development and deployment. This requires
programme and project management organisations and
processes. It uses tools (e.g. for source code management,
unit testing load testing, regression testing, security testing,
and compliance testing).

Software Development Life
Cycle (SDLC)

A solution development process centred on software
engineering. There are agile, iterative and waterfall variants.

Waterfall A development process that is sequential: usually analysis,
design, build, test and roll out. Engineers proceed from one
kind of work to the next without significant iteration or
parallelism between stages.

Iterative Development (aka
Incremental Development in
DSDM)

A development process that proceeds by increments,
meaning that a working subset of the full solution is delivered
as early as possible.
Not necessarily agile. E.g. The Unified Process is iterative,
but not fully agile. It is loosely associated with UML. (RUP is a
commercial variant embodied in CASE tools from
IBM/Rational.)

Agile Development A solution development process that is not only iterative, but
also flexible about the requirements, the solution and the
process being followed. The many varieties are
characterised by short-cycle iterative development, early
testing for usability and performance, and flexible
requirements. User involvement and feedback is a
mandatory prerequisite in agile development.

Transition Once the architecture has been realised in the form of an
operational system, that system is usually handed over to two
organisations.
Transition into Operations. The production or run-time
system is handed over to be run by some kind of managed
operations organisation.
Transition into Maintenance: The design or compile-time
system is handed over to be maintained and perhaps
enhanced by some kind of maintenance organisation.

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 58 of 65

ISO9001 A standard in the ISO 9000 family for quality management
systems; which includes:
a set of procedures that cover all key processes in the
business;
monitoring processes to ensure they are effective;
keeping adequate records;
checking output for defects, with appropriate and corrective
action where necessary;
regularly reviewing individual processes and the quality
system itself for effectiveness; and facilitating continual
improvement.

11.2.2 Architecture Change Management

Architecture change
management

The organisation and processes that are needed to manage
changes to architecture descriptions, mostly stemming from
changes to requirements or constraints, or operational
systems.

Baseline configuration A specification or product that has been formally reviewed
and agreed upon. The basis for further development. Can be
changed only through formal change management.
E.g. a contract, a requirements catalogue, architecture
documentation, or a hardware configuration.

Configuration Item An item in a baseline configuration. Could be a requirement,
a source code component or a hardware device. Can be at
any level of granularity.
“Component of an Infrastructure under the control of
configuration management. A configuration item can range
from an entire system (hardware, software, documentation) to
a single hardware component.” ITIL

Agile Willing and able to speedily respond to change.

Change management The organisation and processes needed to both exercise
change control to a baseline, and perform configuration
management.

Change Control The organisation and processes needed within change
management to:
� Monitor the potential sources of change
� Record change requests
� Perform impact analysis
� Decide which changes should be made.

Request for Change (RFC) “Form used to record details of a request for a change to any
Configuration Item within an Infrastructure or to procedures
and items associated with the Infrastructure.” ITIL

Impact analysis Analysis of the effects of a change (perhaps a new
requirement or deliverable) to find the effects of that change.
How does it impact what has been done so far? How does it
constrain what is planned for the future? Leads to an impact
analysis report.

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 59 of 65

Configuration management The organisation and processes needed within change
management to establish a baseline configuration and apply
changes to that baseline configuration. Involves work to:
� Identify and document the characteristics of each item.
� Define dependencies between items.
� Control the introduction of new versions of items.
� Report the status of configuration items and changes to

them.

11.2.3 Architecture Governance

Governance That facet of management concerned with ensuring an
enterprise does what it is supposed to do - that is, achieves
goals, follows rules and delivers what its stakeholders expect.
It requires measurement and control of performance.
May be subdivided into
� Corporate governance and principles: the responsibility

of the enterprise’s executive board.
� IT governance and principles: the responsibility of an IT

board.
� (Enterprise) architecture governance and principles – for

strategic design: the responsibility an architecture board.
Architecture governance The management of an architecture (in development or

operation) so as to ensure it conforms to pre-defined
architectural requirements, principles, policies and models.

Architecture board The group of people who maintain architecture principles and
governance processes, and appoint governing architects.

Architecture contract A document that defines those architectural requirements,
principles, policies and models that a system should conform
to as it is built and when it runs. Also defines any architecture
stakeholder rights and interests that must be met.

Governing architect The architect who has been nominated by the governance
organisation to ensure a system is built and/or run in accord
with its architecture contract, to manage risk and to ensure
the value of the system to its stakeholders. Aka chief
architect or design authority.

Architecture compliance
review

A process for monitoring the compliance of work done to
architecture principles, policies and models. Reviews of
various kinds may be carried out at various points in the
specification and development of a system. Only some of
these reviews require a governing architect or use an
architecture review checklists.

Architecture review
checklist

A standard checklist of questions to be asked in an
architecture compliance review. The questions are general
ones, not necessarily mentioned in the architecture contract.

Architecture conformance
level

How well or how much of an architecture contract is met by a
system, or an architecture description is realised in a system.

Architecture compliance
level

How well or how much of a system corresponds to its
architecture contract and/or description.

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 60 of 65

Dispensation A time-bound waiver from the terms of an architecture
contract, granted by a governing architect, and to be
reviewed after the specified time.

Capability maturity model A reference model for evaluating the maturity of an
organisation and its processes.
First and best known is the maturity model is the CMM for
software processes, from the Carnegie Mellon University
Software Engineering Institute. There are now maturity
models for architecture organisations and processes, such as
those included in the list of references.

11.2.4 Architecture in Operations

Architecture in operations The organisation and processes that are needed to manage
the architecture description of an operational system.

COBIT Control Objectives for Information and related technology,
controlled by Information Systems Audit and Control
Association (ISACA).

IT service A service provided an IT operations department. E.g.
� management of user roles and identities,
� client device configuration,
� storage administration,
� network provision, monitoring and analysis,
� server provision, monitoring and analysis,
� business activity monitoring,
� virtualisation,
� back up & restore,
� incident and problem management.

IT services management
(ITSM)

The organisation and processes for managing IT
infrastructure and the services it provides.

Information technology
Infrastructure Library (ITIL)

A large and globally recognised body of advice from the UK
government Office of Government and Commerce on how to
manage an IT services organisation.

ISO/IEC 20000 An international standard for ITSM (based on the earlier
British Standard, BS 15000). It promotes integration of
processes to deliver managed services to meet the business
and customer requirements.
Processes include Planning & Implementing New or Changed
Services, Service Delivery Process, Relationship Processes,
Control Processes, Resolution Processes and Release
Process.
It was originally developed to reflect best practice guidance
contained within the ITIL framework, although it equally
supports other IT Service Management frameworks and
approaches (after Wikipedia).

IT configuration
management database
(CMDB)

“A database of record of configuration item specifications
including relationships among configuration items.” (ITIL).
The authorised configuration of the significant IT components
- vital to a configuration management process.
Should relate to any enterprise architecture repository.

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 61 of 65

Asset management system A record of IT assets. Sometimes focused on end user
devices.
Should relate to any CMDB.

Common Information
Model (CIM)

A standard that defines how the elements in an IT
environment can be represented as a common set of objects
and relationships in a CMDB.
“A common definition of management information for
systems, networks, applications and services” (Distributed
Management Task Force, Inc.).

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 62 of 65

12. Enterprise Technology Classification

This section contains a classification of the computing and information technologies that are
commonly used to implement the logical components and services described in earlier sections of
the reference model. This classification may be used as the structure of a technology catalogue or
portfolio.

This section is NOT EXAMINABLE. But training providers and students may find it helpful when
learning other sections of the reference model.

Client/user access Technology components used by end users:

Client device Desktop PCs, lap tops, mobile devices, client-side operating
systems.

Peripheral A hardware device attached to a computer for the input or
output of data. Has its own operating system.

Generic user applications End user applications that are not specific to a business
domain: browsers, portals, office tools, scanners, etc.

Application platform Intermediate server components and services that support
the running of applications, in the tiers of the platform
between user interfaces and databases.

Web server Receives and responds to HTTP request from clients
Delegates the request to a suitable server-side program.
Responds to client with an HTTP response: usually an HTML
page or image for viewing in a Web browser which contains
pre-existing (static) content) or generated on-the-fly
(dynamic) content. Could be any type of file, Could redirect to
another server.

FTP server Receives and responds to FTP requests from clients.

App server A server that provides client applications with business
services, operations or functions:
Makes these business services accessible through various
protocols (including HTTP).
Provides any kind of data by way of response (including
display mark up).
Manages its own resources (security, transaction processing,
resource pooling messaging) to various qualities of service.

Transaction Manager A platform application that enables an application to start,
commit and rollback transactions. Often provided by a DBMS
or an app server.

Distributed Transaction
manager

A transaction manager that can commit or rollback a
transaction that places data in several distinct data resources,
including databases and message queues.

Web services stack A protocol stack used to define, locate, implement, and make
Web services interact with each other.
(Service) Transport Protocol: for transporting messages
between network applications; includes HTTP, SMTP, FTP.
(XML) Messaging Protocol: for encoding messages in a
common XML format understood at either end of a network

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 63 of 65

connection; includes such protocols as XML-RPC, WS-
Addressing, and SOAP.
(Service) Description Protocol: describes the public interface
to a web service; usually WSDL interface format.
(Service) Discovery Protocol: centralizes services into a
common registry. UDDI is yet to be widely adopted.

Remote Database Access
(RDA)

A standard API used by applications to access a remote
DBMS. Defines e.g. how a program should send SQL queries
to a DBMS and how record sets will be returned.
E.g. ODBC: Open Database Connectivity, hundreds of drivers
for many platforms. JDBC: Java Database Connectivity, for
Java clients. ADO.NET: Part of the base class library in the
Microsoft .NET Framework.

Software development Tools used to develop applications: languages, Integrated
Development Environments, testing tools, etc.

Screen scraper A tool that extracts data messages passing to and from the
displayed output of a legacy application. It enables other
applications, including new user interfaces, to enter data into
a legacy application, and redirect data originally destined for
display on the legacy screen. Most often used to interface to
a legacy system that has no defined API for its automated
services.

Integration tools Tools that support point-to-point communication, directory-
based distribution and mediator-based distribution, such as
file transfer, remote procedure call, and message oriented
middleware.
It is impossible to draw clean lines between integration tools.
Most middleware technologies can be used to implement
most component interoperation styles - to support distributed
objects, SOA, EDA etc..

Middleware A platform technology that helps application components to
communicate and interoperate across a network.
“A confusing mess of messaging, gateways, interfaces,
request brokers, queue managers and transaction monitors -
often embedded in each other and in other things. “ (Loosely
and Douglas).

Point-to-point integration tool A technology that enables a programmer to write distributed
software, in which client/sender and server/receiver modules
run on different computers.
The theory is to make a remote invocation appear to a
programmer as though it is a local invocation of a process
within the same name space on the same computer. In
practice, remote invocation is more complex.
The server module is slower to respond, less certainly
available, less reliable and distribution raises security
concerns. On the other hand, the server is more scalable,
since it can be scaled out to parallel servers.
Technologies that can be used to enable point-to-point
communication (as well as other kinds of communication)
include RPC and Web Services.

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 64 of 65

Remote Procedure Call
(RPC)

A technology that enables a client to find an automated
service on a remote machine, and invoke a named procedure
in this different name space. The client sends a fixed set of
parameters and waits for the answer to be returned in
message using the same interface.
(E.g. XML-RPC uses XML to encode its calls and HTTP as a
transport mechanism.) RPC can be used to implement both
DO and SOA interoperation styles. In DO, since it invokes a
procedure as an object-method pair, it is often called Remote
Method Invocation. (And RMI is the name of Java's Java
Remote Method Invocation API.)

Web services A technology that enables a client to find an automated
service and invoke it using the SOAP protocol to exchange
XML-based messages.
Usually over a network.
Usually via HTTP/HTTPS - but also SMTP.
Web services can be stateless or stateful, and invoked
synchronously of asynchronously. So though they are
commonly associated with SOA, they can also be used to
implement a Distributed Object style of interoperation.

Introduction agent (direct
broker) integration tool

Technologies that can be used to implement the introduction
agent kind of distribution. They add overheads on top of
RPC.

Object Request Broker
(ORB)

A technology that enables the objects in an object-oriented
program to be distributed between computers. A technology
programmers need to get one distributed object to call an
operation on another.
E.g. Microsoft ORBs include DCOM and .Net remoting.

Common Object Request
Broker Architecture (CORBA)

Standards for an object request broker to comply with,
defined by the OMG. It uses CORBA IDL and IIOP.

Internet Inter-ORB Protocol
(IIOP)

A standard for technologies used to send objects (rather than
messages) over TCP/IP.

Web service broker A technology that uses Universal Description Discovery and
Integration (UDDI) as the API for registration and location of
web services. It offers a SOAP-based web service for finding
and registering web services.

Message broker (indirect
broker) integration tool

A Message-Oriented Middleware (MOM) technology that sits
between communicating components; it stores and forwards
messages according to the required styles of interoperation
and communication.
MOM technologies may be used to implement any
communication style. They may use RPC or P2P technology
under the covers.

Message Queuing
technology (MQ)

A message broker that stores and forwards messages. It
smoothes demand for server operations, since the server
works at its own pace, but can reduce client response time.

Publish and subscribe
integration tool

Publish and subscribe distribution is possible via any kind of
component communication technology, but is most usually
associated with a mediator or message broker.

Copyright © BCS 2012
Enterprise and Solution Architecture Reference Model
Version 4.0 June 2012

Page 65 of 65

Data management tools Tools for the storage and retrieval of structured data.

Database management
system (DBMS)

A platform application that manages the storage and retrieval
of data in/from a data store. A broker that enables
applications to create, read, update and delete data in a
database. The main types are:
Hierarchical
Network (aka CODASYL)
Relational (supports SQL)
NoSQL (used in document and web applications)

Distributed database A database that is physically located in two or more locations,
under the control of one DBMS or a distributed transaction
manager.

Data warehouse A database that is designed to support analysis of stored data
and management information reports.

Unstructured data
management tools

Tools for content, document and knowledge management

Content management tools Tools for producing, storing, editing, sharing and searching
any unstructured data.

Document management Content management tools for producing, storing, editing,
sharing and searching electronic documents and document
images. Often associated with workflow systems.

Knowledge management
tools

Typically some kind of collaborative application.

Server devices Server hardware, server OS, clustering, etc.

Data storage
On-line data store, DAS, NAS and SAN, Connect and switch ,
etc.

Networks Technologies that enable applications to communicate over a
network: LAN devices, WAN devices, load balancers,
convergent technologies.

Router A computer that ties two or more networks together, with
routing and forwarding capabilities.

Hub A computer that connects devices (computers, printers,
servers) on the same network within a building or campus,
and enables connected devices to talk to each other.

Switch A hub with additional routing and forwarding capabilities.

IT Services
Management/Operations

Tools used to support service level management,
performance monitoring, event and fault monitoring , etc.

Environment
Technologies used in data centres: server racks, control
systems, power systems, etc.

